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Abstract: We prove the existence of Cantor families of periodic solutions for nonlinear wave equations
in higher spatial dimensions with periodic boundary conditions. We study both forced and autonomous
PDEs. In the latter case our theorems generalize previous results of Bourgain to more general nonlinear-
ities of class C* and assuming weaker non-resonance conditions. Our solutions have Sobolev regularity
both in time and space. The proofs are based on a differentiable Nash-Moser iteration scheme, where
it is sufficient to get estimates of interpolation type for the inverse linearized operators. Our approach
works also in presence of very large “clusters of small divisors”.
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1 Introduction

The search for periodic solutions of nonlinear wave equations has a long standing tradition. The first pio-
neering results of Rabinowitz [23] and Brezis-Coron-Nirenberg [5] proved, by means of global variational
methods, the existence of periodic solutions for 1-dimensional nonlinear wave equations, with a rational
frequency. The reason for such a condition is that the other frequencies give rise to a “small divisors”
problem type, due to complex resonance phenomena.

On the other hand, the existence of periodic and quasi periodic solutions in a neighborhood of an
elliptic equilibrium, for positive measure sets of frequencies, was also considered. In this direction, the
first results have been proved by Kuksin [16] and Wayne [25] for one dimensional, analytic, nonlinear wave
equations. The main difficulty, namely the presence of arbitrarily “small divisors” in the expansion series
of the solutions, is handled via KAM theory. The pioneering results in [16]-[25] were limited to Dirichlet
boundary conditions because they required the eigenvalues of the Laplacian to be simple (the square
roots of the eigenvalues are the normal modes frequencies of small oscillations of the string). In this case
one can impose strong non-resonance conditions between the “tangential” and the “normal” frequencies
of the expected KAM torus (the so-called “second order Melnikov” non-resonance conditions) to solve
the linear homological equations which arise at each step of the KAM iteration, see also [22]-[18]-[17].
Such equations are linear PDEs with constant coefficients and can be solved by standard Fourier series.
For periodic boundary conditions, where two consecutive eigenvalues are possibly equal, the second order
Melnikov non-resonance conditions are violated.

In order to overcome such limitations, Craig and Wayne [11] introduced the Lyapunov-Schmidt de-
composition method for PDEs and solved the small divisors problem, for periodic solutions, with an
analytic Newton iteration scheme. Such an approach is particularly designed for dealing with resonant
situations. On the other hand, the main difficulty of this strategy lies in the inversion of the linearized
operators obtained at each step of the iteration, and in achieving suitable estimates for their inverse in
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high (analytic) norms. Indeed these operators come from self-adjoint linear PDEs with non-constant
coefficients and are small perturbations of a diagonal operator having arbitrarily small eigenvalues. To
solve this problem Craig and Wayne imposed, for positive measure sets of parameters, lower bounds for
the moduli of the eigenvalues (in particular, all the eigenvalues must be non-zero). These assumptions
imply upper bounds for the operatorial L2-norm of the inverse operators. Next, in order to get estimates
on the inverse in analytic norms, Craig and Wayne developed a coupling technique inspired by the meth-
ods of Frolich-Spencer [14] in the Anderson localization theory, see also [10]. Key ingredients to achieve
estimates for the inverse operators in high norms are the following assumptions on the unperturbed op-
erator: (i) “separation properties” between clusters of singular sites (that is between the Fourier indexes
of the small divisors), (i¢) properties of “well-localization” of the eigenfunctions with respect to the ex-
ponentials. These two facts, together with the analyticity of the functions, imply a very weak interaction
between the singular sites. The second requirement (iz) is free when working with periodic boundary
conditions. On the other hand, since the first requirement (i) can be obtained by imposing only the
“first order Melnikov” non-resonance conditions, the Craig-Wayne approach works perfectly also in case
of degenerate eigenvalues. In [11] the “clusters of small divisors” have a fixed bounded size: it is the case
for one dimensional nonlinear wave and Schrodinger equations with periodic boundary conditions, see
also [10].

The main difficulty in extending these results to PDEs in higher spatial dimensions is that the eigen-
values of the Laplacian can be highly degenerate, forming clusters of increasing size which tends to
infinity.

This further problem has been first solved by Bourgain [6] for nonlinear wave equations in dimension
d > 2 with periodic boundary conditions, extending the Craig-Wayne techniques. These results hold for
analytic (polynomial) nonlinearities and prove the existence of periodic solutions having Gevrey regularity
both in time and space. Suitable separations properties between the clusters of small divisors are imposed
in [6] assuming a strong Diophantine-type condition, see remark 4.1. Then, using repeatedly the resolvent
identity (see [7]), Bourgain proves a sub-exponentially fast decay for the off-diagonal terms of the inverse
matrix. This estimate on the speed of decay gives an upper bound for the inverse matrix in Gevrey
norm. For this step the high (Gevrey) regularity of the given functions is exploited. Similar results for
the nonlinear Schrédinger equation have been proved in [7, Appendix 2], but, in that case, the separation
conditions for the clusters of small divisors are more simply obtained.

The main result in [7] actually proves the existence also of quasi-periodic solutions in dimension d = 2. See
also [8] about the construction of quasi-periodic orbits for the nonlinear wave and Schrodinger equations
in any spatial dimension.

In the present paper we prove the existence of periodic solutions for higher dimensional nonlinear
wave equations for merely differentiable nonlinearities and under weaker non-resonance conditions than
in [6]. We consider both forced and autonomous PDEs. In the forced case Theorem 1.1 is the first
higher dimensional result, and extends [21], [13], [2], which are valid for 1-dimensional equations. In the
autonomous case Theorem 1.2 generalizes the result of Bourgain [6]. Our solutions have the same Sobolev
regularity both in time and space.

In order to prove our results we need all the power of the differentiable Nash-Moser theory. In
particular, the key point of the iterative process lies in the “a-priori” bounds (15) for the divergence of
the high Sobolev norms of the approximate solutions; we refer to [4] for further explanations and for a
comparison with the approach of [11].

Concerning the linearized operators obtained at each step of the Nash-Moser iteration, it is sufficient to
achieve just interpolation type estimates for their inverses, see the key property (P5). Our approach works
also in presence of possibly very large clusters of small divisors: the “dyadic” condition (H1) (see section
3.2) is weaker than the corresponding ones in [7] (Lemma 7 of Appendix 2) and in [15]. Furthermore
(H1) could also be considerably weakened, see remark 3.1, even though not completely eliminated, see
the discussion below and remark 3.2. A point of interest is that, in presence of possibly very large clusters
of small divisors, the use of Sobolev norms, instead of analytic or Gevrey ones, used in [11]-[6], makes the
estimates easier. The most intuitive reason is that a lower bound for the moduli of the eigenvalues yields
immediately a L2-bound for the inverse matrix, and the Sobolev norms are closer to the L?-norm than the



Gevrey or analytic norms, see lemma 3.1 and related comments. Clearly, working with functions having
a mere Sobolev regularity, has the drawback of a slow (polynomial) decay off the diagonal of the matrix
elements of these operators. This makes the interactions between their singular clusters rather strong.
Nevertheless a polynomial decay of large enough order (connected to some smoothness assumption) is
sufficient.

On the other hand, we underline that it does not seem sufficient to have only lower bounds for the
moduli of all the eigenvalues without some separation properties between the singular clusters. This
information, by itself, would give a too weak estimate for the norm of the inverse matrix, and the Nash-
Moser scheme would not converge, see remark 3.2. This is also related to a famous counter-example of
Lojasiewicz-Zehnder [19] concerning the optimal conditions in an abstract Nash-Moser implicit function
theorem.

Since the aim of the present paper is to focus on the solution of the small divisors problem in presence
of large clusters and with differentiable nonlinearities, we have considered model cases in which the
bifurcation equation arising with the Lyapunov-Schmidt reduction, or is not present (as for Theorem 1.1)
or it is rather simply solved (as for Theorem 1.2).

Before concluding this introduction, we mention that the KAM approach has been extended by
Chierchia-You [9] to prove the existence of quasi-periodic solutions for one dimensional wave and Schrédinger
equations in case of periodic boundary conditions (in particular, their theorem covers the result of [11]),
and by Eliasson-Kuksin [12] for higher dimensional nonlinear Schrodinger equations. We also mention
that Gentile-Procesi [15] have recently obtained the existence of periodic solutions for higher dimensional
nonlinear Schrodinger equations by the Lindstedt series method. We remark that in all the previous
results the nonlinearities are required to be analytic and the solutions are analytic in time.

Acknowledgments: The authors thank P. Baldi, L. Biasco and M.Procesi for interesting comments.

1.1 Main results

Let us consider d-dimensional nonlinear wave equations with periodic boundary conditions of the form

uge — Au+ mu = eF (wt, z,u) (1)
u(t,x) = u(t,z + 27k), Vk € Z°

where the forcing term F(wt,z,u) is 27 /w-periodic in time?, 27-periodic in each spatial variable x;,
i1=1,...,d, m € R and € > 0 is a small parameter.

We consider the non-resonant case when
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ye(0,1), N:=|iP+m, V(,j)€ZxZ. (2)

Note that in (2), the exponent 3/2 is fixed for simplicity of exposition and could be replaced by any
a > 1. For all j such that A\; > 0 define w; := \/E Assumption (2) means that the forcing frequency w
does not enter in resonance with the normal mode frequencies w; of oscillations of the membrane.

By standard arguments, (2) is satisfied for all w in [@1, @] but a subset of measure O(%).

Concerning regularity we only assume that F' € C*(T x T¢ x R;R) for some k large enough.
If F(t,z,0) £ 0 then v = 0 is not a solution of (1) for € # 0.

e Question: do there exist periodic solutions of (1) for positive measure sets of (&,w)?
Normalizing the period, we look for 27-periodic in time solutions of

wiugy — Au+mu = eF(t, 2, u) (3)

2That is F(-,z,u) is 2n-periodic.



(where F is 2m-periodic in t) in the real Sobolev space?

H® := H(T x T4 R) := {u(t,x) = Z ul’jei(ltﬂ'w) UL = U
(1,j)EZXZ4
[ lul2 = DT P max(@ + 1), 1) < +oo}
(1,j)EZXZ4

for some s > (d +1)/2.
We recall that for s > (d + 1)/2 we have the continuous inclusion H®(T*!) — L>°(T4*+1) and H® is
a Banach algebra with respect to the multiplication of functions.

Theorem 1.1 Fiz 0 < &y < wy. There is s := s(d), k := k(d) € N, such that:
VF € CF(T x T? x R), ¥y € (0,1), there exist e := eo(7y), K,C > 0 (independent of ), a map
u € CH([0,e0] x [w1,@2); H®) with ||u(e,w)|ls < Ky te, |(Dewii)(e,w)]s < Kyt
and a Cantor like set A C [0,e0] X [01, 2], of Lebesgue measure
|Aco| > €0 (lw2 —w1] —C), (4)
such that, ¥(e,w) € Ax, U(e,w) is a solution of (3).

Note that, as the freely chosen small parameter v tends to 0, the constant £¢(7) tends to 0, and the
bounds on @ get worse, but, as a counterpart, the ratio |A|/€0(w2 —@1) tends to 1, i.e. the set A has
asymptotically full measure.

The conditions defining A, are (2) and (7) (which are independent of €), plus infinitely many others,

which depend on the nonlinearity, and are required to get the invertibility of the linearized operators
obtained at each step of the Nash-Moser iteration (see Theorem 2.1).

Remark 1.1 The non-resonance condition (2) implies m # 0. Note that if m < 0 the equilibrium uw = 0
is not completely elliptic. In the case m = 0, under some additional assumptions on F', a result similar to
Theorem 1.1 holds assuming condition (2) only for all (I,7) # 0. Then we perform a Lyapunov-Schmidt
reduction according to the decomposition H® = R ® H§ where Hf denote the Sobolev functions with zero
mean value.

We develop in detail all the computations to prove Theorem 1.1. The same techniques can be used to
prove the existence of Cantor families of small amplitude periodic solutions for autonomous d-dimensional
nonlinear wave equations of the form

ugy — Au + mu = auP + r(z,u) (5)
u(t, z) = u(t,z + 2wk), Vk € Z4

with p > 3 odd integer, a € R, a # 0, and
r(z,u) € CH(TT xR), k>p, r(z,0)=...=0r(x,0)=0 and r(—z,u)=r(z,u). (6)
The bounded solutions of the linearized equation uy; — Au+ mu = 0 which are even in time and in x are
u= Z cos(wjt)Ajcos(j-x), Aj eR, wj:=/]j2+m.
JEZA|j|2+m>0

Fixed jo, we aim to prove the existence of small amplitude periodic solutions of the nonlinear equation
(5) with frequencies close to wj,. Assuming that m is irrational, the normal mode frequencies w; com-

mensurable with wj, satisfy |j| = |jo|. We shall assume the stronger hypothesis that m is Diophantine,
to have a quantitative non-resonance condition like
2 _ g2, 2 v . .
122 1> (Ll 1),
|wﬂ wJ0| = (|l| + 1)7— (|j| | |) 7é (|JO| )

3The symbol z* denotes the complex conjugate of z € C.



similar to (2), see [6].
Rescaling the amplitude u — du, § > 0 and normalizing the period, we look for solutions of

wlup — Au+ mu = eg(d, z,u), g:=0P7 1, 9(0, z,u) := auP + 6 Pr(z, du)

in the subspace HZ,., = {u € H® | u(—t,—z) = u(t,x)}. The regularity property of the composition

operator induced by g on HS , are proved as in [4].

Theorem 1.2 Let p > 3 be an odd integer and assume (6). Suppose m > 0 is Diophantine. Fix jo € Z°.
There is s := s(d), k := k(d) € N such that, for all v € C*, ¥y € (0,1), there exist 6o > 0, A;, € R, a
curve

u € CH([0, 8]; HE

even

) with [Ju(8) — 64}, cos(t) cos(jo - z)||s = O(5?),

and a Cantor set C C [0,d0] of asymptotically full measure such that, ¥6 € C, u(d) is a solution of

wQUtt — Au+mu =uP + r(m, u) with w? = wj20 - Sign(a) or.

Theorem 1.2 generalizes Bourgain’s result in [6] to the case of differentiable nonlinearities, when the
leading nonlinear term is au?, p > 3 and for irrational frequencies satisfying only (7). Furthermore the
existence result of theorem 1.2 holds for a Cantor set C of asymptotically full measure. This requires to
write the dependence with respect to -y in the separation arguments of section 4 (used also in Theorem
1.1).

As said in the introduction the most difficult step in the proof of both Theorems 1.1-1.2 is to get
estimates for the inverse linearized operators which arise at each step of the Nash-Moser iteration. For
this task some “separation properties” for the “singular sites” seem required. For one dimensional wave
equations, by a simple argument in [11]-[10], it is sufficient to assume that w? is Diophantine, namely

gl

max(L, [P’ V(g,p) € Z*\{(0,0)} (7)

w?q —p| >
with v € (0,1). On the other hand, such separation properties are far from obvious in higher spatial
dimension. They have been obtained by Bourgain in [6] under strong non-resonance conditions of Dio-
phantine type for w?, see remark 4.1. In section 4 we shall obtain the same separation properties assuming
only (7). Also in (7), the exponent 3/2 is fixed only for simplicity and could be replaced by any a > 1.

A final comment regarding the boundary conditions. The case of Dirichlet boundary conditions on a
rectangle (with some oddness assumption on the nonlinearity) works similarly to the setting of the present
case. The eigenfunctions of the unperturbed operator are still linear combinations of exponentials and the
high order regularity of u has a straightforward translation into the behavior of its Fourier coefficients,
i.e. of its components in the orthonormal basis of the eigenfunctions. On the contrary, in the case of
a general bounded domain Q C R?, the eigenfunctions of the Laplacian do not possess such a good
property, even if they form an orthonormal basis of H!(Q). Therefore the existence of periodic solutions
is this case is completely open (but see [1] in the case of an integral nonlinearity which does not mix the
spatial modes).

Notations: N(A4,n) denotes the p-neighborhood of a subset A of a normed space; z* is the complex
conjugate of z € C; the symbol [z] € N denotes the integer part of z € R. We denote by L(H4, Hg) the
set of continuous linear operators from H4 to Hg. d(A4; B) := inf{|a — b|,a € A, b € B} is the distance
from the set A to the set B.

2 The Nash-Moser scheme

Consider the orthogonal splitting
HS = W(N") D W(Nn)L

u= Z Ul,jei(”““)}

[(L,5)|<Nn

where

Wi = {u e e




W)L — {u € H®

[(L.3)|>Nn
with*
N, = [e*], A:=InNy. (8)
In the proof of Theorem 2.1 we shall take A, i.e. Ny € N, large enough. We denote by
Py, : H® — W& and Py H® — W+

the orthogonal projectors onto W(N») and WNVn)+,

The convergence of the Nash-Moser scheme is based on properties (P1), (P2), (P3), (P4), (P5) below.
The first three properties are standard for the composition operator f : H® — H?® defined by

fu)(t,z) == F(t,z,u(t,x))
where F € CF(T x T? x R;R) with k > s +2 and s > (d +1)/2.
e (P1) (Regularity) f € C?(H®; H®) and D?f is bounded on {||u|s < 1}.
e (P2) (Tame) Vs < s' <k, Yu € H* such that |jull, <1, ||f(w)|s < C(s)(1 + [Jull«).
1f(u+h) = f(u) = Df(u) hlls < O ) (lulls IllZ + 2] ]12]s)
where [Df(u)h|(t,z) = (0, F)(t,z,u)h(t, z). In particular, for s’ = s,
1 (u+h) — f(u) — Df(u) hll, < ClIAIE. (9)

We refer to [20] for the proof of (P2), see also [24]. Properties (P1) and (P3) are obtained similarly.
Furthermore, by the definitions of the spaces H® and the projectors Py, we have:

[Py ullssr < NTulls,  Vue H?
IPyulls < N7 [[ullssr, Vu€ HT.

e (P3) (Taylor Tame) Vs < s’ < k — 2, Yu € H® such that ||ul, <1, Vh € H,

e (P4) (Smoothing) VN € N\{0},

The key property (P5), proved in section 3, is an invertibility property for the linearized operator
Ly(e,w,ule,w))[h] := Loh —ePyDf(u(e,w))h,  Yhe W) (10)
where
L, :=w?0y —A+m
and u € C*([0, 0] x [w1, @], W) with [|u|cr(s) = SUD[0, 0] x [@1.,@5] 1U(E; W) s + [ De wule, w)|s.

Let
G:= {(s,w) € [0,e0] X [w1,w2] | w satisfies (2) and (7)}

e (P5) (Invertibility of Ly) I u = u(d), s := s(d), C, ¢, K, such that ¥y € (0,1), Vs’ > s, VC > 0,
there exist g := €g(7, s’,C) > 0 with the following property:
VN, Yu € C*([0, 0] X [@1, o], W) with [[ul|c1(s) < Cy~1, there is a set Gy (u) C [0,20] x [w1, @2]
such that, if (g,w) € N(Gy(u),yN779), 0 := u+ 3, then Ly (g, w, u(e,w)) is invertible and

|ext e w il < EE v (jalle + i) e W, (1)
st e i < 2 jal. (12)

Moreover, if N < c¢(ye51)?/3 then G (u) = G, and if |Ju; — ualls < N~7, then

., — YE
|G (un)\GS (u1)] < C% . VN'>N. (13)

4The symbol [-] denotes the integer part.



Theorem 2.1 (Nash-Moser) Let 0 < & < go(7) be small enough (possibly depending on d, F, @1, @2).
There exists a decreasing sequence of subsets of “non-resonant” parameters

L..CA,CA, 1C...CA CAy=GCA:= [O,Eo]X[@l,@Q]

and a sequence of functions i, (e,w) € C*(A, W) satisfying |[in|s < Key™, || Dewiin|ls < Ky71,
such that, ¥n, if (e,w) € N (A, vN;7/2) then uy(e,w) is a solution of

(Pn,) L,u—ePy, f(u)=0.

On the Cantor like set As, := Ny>0An, which satisfies the measure estimate (4), the sequence (U, (g, w))
converges in H® to a solution t(e,w) of equation (3) satisfying ||u||s < Key™1, | D.wils < Ky~t. The
convergence is uniform in (€,w) € Aoo.

ProOF. In the proof K, K’, K;, denote constants depending on d, F, Ny, @1, ws at most.
First step: initialization. Assume o > 7/2. If (s,w) € N(G,yNy ?) then, by (2), V|(l,7)| < No,
W22 = Xj| > ~v/N2"%, for Ny large so that NJ~ /% > @,. Hence || L5 A, < N2y~ 1||h||s, Yh € W),
By the contraction mapping theorem, using (P1), for ey~! small, there exists a unique solution
up = up(e,w) of equation (Py,) satisfying |lug|ls < Koey~!. Furthermore, by the implicit function
theorem, (g,w) — ug(e,w) is in C*(N(G,yNy 7), H?) and || D. yuolls < Koy~ '
We define ug := 1oug where 1y is a C* cut-off function defined on A that takes the values 1
on N(G,yN;?/2) and 0 outside N(G,vNy ), and |Diy| < CN§y~!. By the previous estimates,
[uolls < Kg'yilv ”Ds,uaO”s < K'771a taking 5CN3771 <L

Second step: iteration. Suppose we have already defined u,, € C'(A4, W(N”)) satisfying the properties
stated in the proposition and, in addition, V1 < k < n,

ik = x-ills < Koy ' N7t | Do = Deino|ls < Ky N (14)
By < (1+ N/ )Bi—1, By, < Bj_; + K771N12L(ngBk +¢eBy,_,) (15)
where
By =1+ |[@nllssp, Bl =1+ |Deuiinllsrs
and
Bi=20+1+3p), o=p+3. (16)

By the first inequality in (15) we get

Bn < BOH?=1(1 + Nz#) < KNﬁ_i,_l (17)
and so, by the second inequality,
B, < Ky 'NY (18)
For h € WVrt1) we write
Lo(iin +h) — Py, . f(iin +h) = |Lyiin — Py, f(an)} n [Lwh — &Py, ., Df(iin)h] + Ru(R)

= rat Lo,y (6w, Tn)h + Ru(h)
where
o= L — Py f(n)  and Ra(h) = —<Py,, (fn + B) — f(5) — DfGn)h).
If (e,w) € N(A,;vN,;7/2) then w, solves equation (Py, ) and so

T = LU, — Py, ., [(tUn) = —Px. P, f(Uy) € W= wEne) (19)



Inversion of Ly, (¢,w,u,). By property (P5), defining

Api1:=A, NG, ., (), (20)

wea (

Ly, (e,w,uy) is invertible for (e,w) € N(Apy1,7N,7;) and

) K
st ot S Enzalnle, v e W, @)

Set
Gt : W) NVt Gni1(h) == —Ej_\,iJrl(E,w,ﬂn)(rn + R, (h))

so that equation (Py, is equivalent to the the fixed point problem h = G, 1(h).

n+1)
Lemma 2.1 (Contraction) 3K; > 0 such that, for ey™' small enough, V(e,w) € N(Any1,7N, 7).
Gn+1 is a contraction in Buy1 == {h € WWNn+1) | |h|ls < ppy1 = 2K1ey N, 771}

PROOF. For Ny large enough (i.e. A large enough, see (8)) we have N, < N, 7/2, Vn, and so
N(Aps1,7N, 7)) C N(A,;vN,, 9 /2). Then (19) holds and

G, < SN (Il + IRA1L)

(P4),(9) K - _
S N (N NP F ) s < IRIE)

T NH -8 2
7K Ny (N2 B+ ()12
g
S KN, SN! 4+ K1 NA L |IR)I2 . (22)

By (22) and the definition of £ in (16), if ||h||s < pny1 := 2K1ey "N, 77 ', then

n+1
for ey~ small enough.
Next we use the formula

DGuir(W)[v] = L3}, (6,0, T0n) P, (DF (i + 1) = Df (i) )0)

E o
gn+1(h)Hs < ;KanH L+ Kl N}y pogr < ot

1

to obtain

[[vlls
[1DGnr1(h)[]lls < K~ N"Hllhll [olls < K~ Nﬁﬂpnﬂllvlls =5 (23)

1

for ey~* small enough. Hence G, 11 is a contraction on Bn+1~ [ |

Let hp41 be the fixed point of G, 41 defined for all (e,w) € N (Apy1, 7N, Y1) and tpy1 = Uy + hypy1.

Lemma 2.2 (Estimate of the derivatives) The map h,i1 € C*(N(A,q1, 7N, 7)) WW=+1)) and
HDs,whn+1”s < K'Vian_-o-l

Proor. For all (¢,w) € N(Ans1, YN, 1), hnyi(e,w) is a solution of Upy1(e,w, hny1(e,w)) = 0 where
Ups1(e,w,h) := L, (tUn + h) —ePn, ., f(Un +h).

Note that, with the notations of the proof of lemma 2.1, Uy, 11(g,w,h) = L, ,, (g, w, U )(h — Gny1(h)).
Since ||DGpi1(hnt1)|ls < 1/2 (see (23)), DpUnyi(e,w, hny1) = LN, ,, (€, w, un41) is invertible and

n+1

1 B B K ,
H (DhUn+1(€7wa hn+1)) . = H(I - Dgn+1(hn+1))_l‘cNi+1 (€’w7u’ﬂ) S 7NTIL+1

(24)



Hence, by the Implicit Function Theorem, hp 1 € CHN (Api1, YN, 7p), WWn+1)) and
De,whn+1 = _‘C;]}Hrl (57 W, un+1)(De,wUn+1)(57 W, hn+1) . (25)

Now, using that i, (e,w) solves (Py,) for (¢,w) € N(Aps1, 7N, 1), we get

DaUn+1(€, w, hn+1) = PN”f(ﬂn) - PN1L+1f(un+1) + EPN”Df(ﬂn)Daﬂn - EPN,,L+1Df(un+1)DEﬂn (26)

and
DwUn+1(€ w, hn+1) = 2w(hn+1) t + EPN Df(ﬂn)D Uy, — €PN1L+1Df(’U,n+1)Dwan . (27)

We deduce from (24)-(27) the estimate || Dz o hni1||s < Ky~IN, ! using (11), (17), (18), [|hnt1lls < pt1
in lemma 2.1, and the definition of 5 in (16); we omit the detalls |

We now define, by means of a cut-off function, a C''-extension of h, 1 € C(A,1, W (Nn )) onto the
whole A. Note that h,i; is yet defined on a neighborhood of A, of width yN, 7, and ||k, y1lls =
O(e *1Nn_+"1 b.

Lemma 2.3 (Whitney extension) There exists an extension hyq € CH(A, WNn+1)) of hy, 1 satisfy-
ing, for 5'7_1 small, ||hpy1|ls < K5'Y_1Nn_-f-71 ! HDE,whn+1”s < K7_1N71_+1

PROOF. Let

~ . { ¢n+1(€,w)hn+1(€,w) if (E,w) S N(An+1,’yNn+1) (28)

hpy1(e,w) := 0 if (e,w) € N(Ang1, 7N, 1)

where 1,41 is a C°° cut-off function satisfying 0 < ¥41 < 1, 1 =1 on N (Apy1, YN, 71/2), Y1 =0
outside N'(Apny1, 7N, 71), and |D. ,thpy1| <y~ N,‘{HC (a cut-off function 9,41 can be constructed like
in lemma 3.3 of [3]).

Then [[hni1lls < [[Bntills < Key™ IN, 77! by lemma 2.1, and, for ey~! < 1,

”De,wﬁn+1“s < ‘Ds,wwn+1‘ th+1”s + ||D£,whn+1||s < R’Y anJil
thanks to the estimate || D whyt1|ls < Ky 1N,y proved in lemma 2.2. ®

Finally we define the C'-Whitney extension @, 1 € C*(4, W (Nnt1 ) of u,y1 as
an+1 = ’ﬁn + hn+1 .

To complete the induction proof of Theorem 2.1 we have to prove that u,11 and A, 41 satisfy all the
properties stated in the Theorem plus (14)-(15) at the step n + 1.

By lemma 2.3 property (14) is verified at the step n + 1. Then we get also ||tnt1]ls < Key™
[ Dewiintals < Ky~

Now we prove that also (15) holds at the step n + 1.

I and

Lemma 2.4 For e < go(v, Ny, 8) small enough,
By <(1+NF B, and B, <B,+ Ky 'N! (NI, B,+eB),).

PROOF. We have Bny1 < By + ||hns1llsrs where, by (28), |[nsillers < |hniillsss and, for all
(e,w) € N(Ant1, YN 1Y), hngr = —E&iﬂ(a,wﬂn)(rn + Ry (hp+1)). Then

[

(P5) NH ~
th+1”s+6 < K Y,Ly—H <||Tn||s+ﬂ + ||Rn(hn+1)||s+ﬂ + ||un||s+ﬁ(‘|rn”s + ||Rn(hn+1)HS)) . (29)

y (19) and the tame estimate (P2),

. (P2) .
Irnlls+s < ellf(@n)lls+s < eBK(1+[[unllstp) = eK B . (30)



By the Taylor tame estimate (P3), and since ||hn41]ls < pp1 = 2K1e77 2N, 77" (lemma 2.1)

(P3) _
|Ra(hni)llors < K (lnllsspllinsal2 + s llslhnsilss ) < oK (Buplos + psilbnsallors) -
(31)
Inserting in (29) estimates (30)-(31), ||rn|ls, [|[Rn(hnt1)lls < Ke, we get

7 L o—1 7 1
Wnsilloss < KN Bt (KNI Y lnsallsns < KN Bu ot gllhsalloss

for Key™! < 1/2. Hence ||hpi1lls+5 < NE, 1 Byn. The second inequality follows similarly by (25)-(27) and
using ||D6,whn+1||s+ﬁ <Cvy~ 1NU+1||hn+1||s+6 + ||D5 whn-‘rle-&-B u
Lemma 2.5 (Measure estimate) A, := (), satisfies |Ax| > eo(w2 — @1) — Cepy.

PROOF. Recalling (20), the complementary AS, = [J,2, Ny (Un) and, by (P5), Gy | (u,) = G for

all n such that N, 11 < 0(750_1)2/3, that isalln = 0,1...,n* for some n*, so that A+ = Ap« = ... = Ap.
By standard arguments, |G¢| < Cegy. Since ||ty — Un—1]] < N,; 7, ¥n, by (13),

‘ U GNn+1

Y |G () \ G, ()| + 67

n>n*

< Z eoYN, 1+ |G| < Clegy

n>n*
and we get the thesis. B
Finally, by (14), we deduce that, V(e,w) € A, the series

converges in H* (uniformly in (g,w)) to a solution of equation (3) and |||s < Key ™!, || Dewtl|s < Kyt
The proof of Theorem 2.1 is complete. B

3 The linearized problem: proof of (P5)

3.1 Preliminaries

For A C Z4*!, A finite and symmetric (i.e. —A = A), we define the finite dimensional subspace of H*

H, := Spangc4{ex} = { Z hrex = hy € C, hi = h_k} where e (t,z) := elttie)
keA

and k := (I,§) € Z x Z%. We shall denote by P, the L?-orthogonal projector on H 4, defined by

Pahi=Y hpen,  Vh= Y hpe, € H".

keA kezdt+1

Note that P4 is also the H®-orthogonal projector onto H 4. With these notations, the linear operator Ly
in (10) is defined on Hgq, , where

Oy = {k:: (1,§) € Z x Z¢ ‘ 11, )] gN}

10



and we write®
Ly =D +eT with Dh:=w?hy — Ah+mh, Th:= Po,(ah), a(t,x):=—(0,F)(t, x,u(t,z)).

Note that T, as u, depends on the parameters ¢ and w. In the L?- orthonormal basis (ex)reqy of Hay,
D is represented by a diagonal matrix with eigenvalues

dy, = dg gy = "1 + A5, Aj =72 +m,

whereas T is represented by the self-adjoint Toepliz matrix (ag—g )k ke, the ax being the Fourier
coefficients of the function a(t,x).

Definition 3.1 Given U € L(Hgq,,,Hq,) and A, B C Qy, we define the linear operator
Uff:Hy — Hg, Uf = PgU|y,
and its operatorial norm ||Uf||s := sup{||UsAhlls, h € Ha, ||h|s = 1}. We set
LY = PsLy|u, = Pe(D +eT) |y, = D +<Th .
Note that L% is the L?-adjoint of L4 and, in particular, Lﬁ is L2?-selfadjoint.

Lemma 3.1 Let U € L(Ha, Ha) be L?-selfadjoint.
i) Its eigenvalues Ny, satisfy ming |A\g| > X > 0 if and only if U~ |0 < A7L.

- Mans
i) If true then, Vs' >0, [|[U7ly <A1 (—A) where M, :=max|k|, m4 = min |k]|.
mA ke A ke A

PROOF. 1) is standard. For i7), by the smoothing estimates (P4) and lemma 3.1 we get

_ I M M5 1
IU™ hlly < ME U™ Ao < XA Ihllo < —Z-<IlAlls -
mi A

A bounded subset A of Z4+! is said dyadic if M4 < 2m 4 where M := maxyea |k|, ma = minge 4 |K|.
By lemma 3.1, the inverse of the minimum modulus of the eigenvalues of a self-adjoint operator U, acting
on a subspace H, with dyadic A, provides also a bound of the Sobolev operatorial norm ||U |4 .

In the next lemma we estimate the variations of the eigenvalues of L4 (e,w) with respect to w.

Lemma 3.2 Let A C Qu, 0 <@ < @9 and I be any compact interval in [—v,~], of length |I|. Suppose
ullor(sy < Cy~t. There exists o(y) > 0 such that, for all 0 < e < eo(7),

Al ]

w1

{w € [@1, D] s.t. at least one eigenvalue of L4 (e,w) belongs to I}| < (32)

where |A| denotes the number of elements of A.

PROOF. Since the map w — L4(e,w) is C! and each L4 (e,w) is selfadjoint, its eigenvalues can be listed
as C! functions \i(e,w), 1 < k < |A|, of w. In what follows, 0 < & < g¢(7) is fixed and we omit the
dependency with respect to €.

Denoting E,, . the eigenspace of L4(w) associated to A\ (w),

Oup)(w) < max
(DuAe) () heEu s I hllo=1

((&,Lﬁ)(w)h,h)o — (2w(8tth,h)0 + 0(57—1))

max
he€Ey k,llhllo=1

(—20lomlE+0Er™)  (39)

max
h€E k,||hllo=1

5Comparing with the notations of section 2, Hqy = wW) | D=L, and Poy = Py

11



using that ||0,als = [|[(02F)(t,z,u) d,ul|s < Cy~! and integrating by parts.
Let P; denote the L?-orthogonal projector on Hya:={he€ Hy|0h=0}
Claim: Let A\ (w) € [—v,7]. For h € E,, ,, decompose h = hq+hg with hy := Pih, hy :== (I—-Py)h € Hl%A.
Then, for gy small enough, ||hz||2 > 3||h||3/4.
Indeed, if h € Ey k, w?hy — Ah 4+ mh + ePa(ah) = Mg (w)h and so hy satisfies
—Ahy +mhy — A (w)hy = —ePyPa(ah). (34)

Furthermore, by (2), [|5]2 +m| > 3y, Vj € Z%, and if Ay (w) € [~7,7] then ||5|> +m — A\ (w)| > 27. Hence
—A+m— \(g,w) is a L2-selfadjoint operator of H, whose eigenvalues are of modulus > 2v. From (34),

€ Ce h
R0 < ZHPlPA(ah)HO < 7Ha”S”hHO < w

for ey~! small enough, and the claim follows.
Finally, since ||0;h||3 = ||0sh2||2 > ||h2||2, we deduce, from (33) and the previous claim,

3w
< - 2 )<= < w<—a
QM) <, max (= 2lhalf +0(er7) < =5+ 07 < —w < -y

for 0 < e < eo(7) small enough. Therefore, |\, ' (1) N (@1,@2)| < |I|/@; and, summing over all the |4
eigenvalues, we deduce (32). m

3.2 Regular and Singular sites

Definition 3.2 Fized p > 0 we define the regular sites R and the singular sites S, as
R:= {keQN | [y Zp} and S :=Qy\R = {keQN | || <p}.
We introduce the following assumption: the singular sites S can be partitioned in disjoint clusters €2,

S=J 2 (35)

acA
satisfying:
e (H1) (dyadic) M, < 2m,, Ya € A, where M, := maxieq,, |k|, Mmq = mingeq,, |kl

e (H2) (separation) 36 := d(d) € (0,1) such that d(Qa, Q) := mingeq, rea, |k—k| > (My+M,)%/
2, Va # o.

For the wave equation (3), we shall verify both properties (H1)-(H2) in lemma 3.6 and section 4.

Remark 3.1 Condition (H1) is weaker than the corresponding one in [7] (Lemma 7 of Appendix 2). It
could be considerably weakened, but not completely eliminated, see remark 3.2.

For K < N let
O = {k: € ZH | k| < K} and Ly = L2X. (36)
Proposition 3.1 Assume that there is a partition of S satisfying (H1)-(H2). Given T > 0, there exist
= pu(d,7), s:=s(0,d,7) (independent of N) and, Vv € (0,1), Vs’ > s, there is €9 := eo(v,5") > 0 such
that : if <e <ep and VK < N, all the eigenvalues of Lx have modulus > vK~7 then

_ K(s')
5t bllo < =N (bl + 0] ) . VR € Hay (37)
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Remark 3.2 Without exploiting any separation property of the clusters we would only have an estimate
like YN, || L5 Rlls < N¥'||R||sr, Yh € Hay . This is even weaker than a tame like estimate like |£ 3" h||s <
K| |h|l2s:. In [19] Lojasiewicz and Zehnder have shown with a counter-example that a so weak condition
is mot enough for the convergence of the Nash-Moser iteration scheme, whereas a tame estimate like
L5 hlls < K||R||ass with A < 2 would be enough. This fact confirms that some more information, in
addition to lower bounds for the moduli of the eigenvalues, is required.

We shall deduce property (P5) from Proposition 3.1 in the next section. The proof of Proposition 3.1
is provided in sections 3.4, 3.5, 3.6.

3.3 Proof of (P5)
Let

Bi(u) := {(E,w) € [0,20] x [@1,@a] | | L% o < ‘;%} and Gp(u):= KDNBK(U) NG.

By lemma 3.1, (¢,w) € Bk (u) if and only if all the eigenvalues Ag, k = 1,..., K, of L have modulus
greater or equal to 2/K7™. Below, to emphasize the dependence of Ly with respect to parameters, we
shall use the notations Lk (e, w).

Lemma 3.3 Let 7 > 3/2. There is ¢ > 0 such that VK < N., := c(ye5")?/® we have G C Bg(u). As a
consequence, if N < N, then Gn(u) = G.

PROOF. The eigenvalues of Ly have the form —w?I? + |j|2> + m + O(e) with |({,5j)| < K. Hence,
V(e,w) € G, as a consequence of (2), if £gy~ ' K3/? is small enough, then all the eigenvalues of L (e, w)
have modulus > 2v/K3/2. m

On the other hand, for N > N, := ¢(ye; )%, we have to excise additional “resonant parameters”.

Lemma 3.4 Let N > N_,. If (e,w) € N(Gn(w),yN=377) then, VK < N, all the eigenvalues of Ly (g,w)
have modulus > vK~7.

PROOF. For w,w’ € [01,9] and €,¢’ € [0,&¢], we have, Vh € Hq,.,

IN

[t = B, < 12 = lrllo+ &lae.0) = ae el + | = &)Ll

< CK*(jw—w'|+ e —'Dlnllo-

If (e,w) € N(Gn(u),yN737T), there is (¢',w’) € Gy(u) such that |w — w'| + |¢ —&'| < yN7377 and
VK < N,Vh € Hq,,

VK2

| Lk (g,w)hllo > || L (e, w)ho — Carr

2y vK?
Il > (5% - €

.
= = O )kl = Ll

by the definition of By (u). The result follows. B
Lemma 3.5 Let 0,7 > d+ 3. Then the measure estimate (13) holds.
Proor. For N' > N,
GSr (u2)\ G (u1) = GSer (1) N G (uy) C [UKSN (BS: (uz) N By (u) N G)} U [UK>N B (uz) N G] .

By lemma 3.3, if K < N, then B% (u2) N G = (). Hence, to show (13), it is enough to prove that, if
llur —uzlls < N~9, then

=€
> IBi(uo) N Br(u)|+ Y |Bi(us)l SC%~
K<N K>max(N,Ne)
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Since ||Lg(uz2) — Lx(u1)lo = O(eljuz — u1lls) = O(eN~7), if one of the eigenvalues of Ly (usz) is in
[-2vK~7,2vK 7] then, by the variational characterization of the eigenvalues of a selfadjoint operator,
one of the eigenvalues of Ly (up) is in [-29K ™7 — CeN~7,2yK~ " + CeN~7]. As a result

B (u2) N Bg(u1) < {(e,w) | 3 at least one eigenvalue of L (uq)
with modulus in [29K~7,2yK~" 4+ CeN~7]}.

Then, by lemma 3.2, [{w|(e,w) € B (u2) N Bx(u1)}| < CeN~7|Qk|/w1 for each € € (0,¢0], whence
| BS; (u2) N Bre(u1)| < C'e2|Qx N7 < C'e2 KN,

Moreover, still by lemma 3.2, |B% (us)| < Ceo|Qr|yK 7 /w1 < C'egyK9T1=7. Hence, for o,7 > d + 3,

> [Bj(u2) N B (ur)] + > | B (u2)|

K<N K>max(N,Nc,)
< ng( Z KdJrl)NfU + CEO’Y( Z Kd+177)
K<N K>max(N,N50)

< ngNd”*U + C’egry(max(N, NEO))d”*T < CyegN71L,

provided that g¢ is small enough. ®

Lemma 3.6 (Separation in clusters) Vv € (0,1) let p(y) := ¥ (D+1/8 as defined in lemma 4.4.

ere is €o(7y) such tha > N, = c(ye ,V(e,w) € ,YN~7), 0 > 3, there exists a decom-
There i h that VN > N, P RE N(G,yN=7), 0 >3, th ists a d
position of the singular sites

S .= {(l,j) EQN | |w2l2—Aj| < p:i= @} - U Qa (38)

in clusters, satisfying both properties (H1)-(H2) for some § := §(d).
PrOOF. Let (¢,0') € G. By lemma 4.4, Vv € (0, 1),
8= {.5) € w 112 =Nl <)} = U %
acA

satisfying (H1)-(H2) for some & := §(d). If g9(7y) is small enough, then VN > N, , YN =7 < p(y)N =2 /4@,,
and, V|w —w'| <yN~7, we have S C S’ Therefore S = (J,c 4 Qa where Q, := Qf, NS satisfy (H1)-(H2).
|

PROOF OF PROPERTY (P5) COMPLETED. Let (¢,w) € N(Gn,yN~?) with ¢ > 3 + 7. Then, by
lemma 3.6, there exists a partition of the singular sites S satisfying assumptions (H1)-(H2). Furthermore,
by lemma 3.4, VK < N, all the eigenvalues of Lx have modulus > yK~7. Therefore, by Proposition 3.1,
Ly (e,w,u) is invertible and (11) holds (we can fix 7 = d + 3 by lemma 3.5).

The measure estimate (13) is proved in lemma 3.5.

The remainder of this section is devoted to the proof of Proposition 3.1.

3.4 Reduction along the regular sites

We have to solve the linear system
L:Nh:b, h,bGHQN. (39)
According to the splitting of the indexes Qn = RU S we decompose

Ho, =Hr® Hg
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in orthogonal subspaces. Writing the unique decomposition h = hg +hg, b = br +bg, with hg,br € Hp,
hs,bs € Hg, problem (39) is equivalent to

{LghR + L%hs =br

LghR + Lghs =bg. (40)

We recall that s > (d + 1)/2 so that H® is a Banach algebra.
To prove the invertibility of LE = Dg + T where, for brevity, Dg := Dﬁ, TR := Tg‘, note that

Vs 20, | Drhlls 2 (min|de)|Alls = pllhlls, Vh € Hr. (41)

Lemma 3.7 There is ¢ > 0 such that if ||al|s/p < ¢ then ||(LE)~ o, [[(LE) 7Y < 2p7 1.
Proor. We have, Vh € Hg,
ILERlls = | Drh|ls — el TrAlls = (p — Cllalls) |25

and the result follows. Similarly for ||(LE)=!|lo. m

Next we estimate the Sobolev norm ||(LE)~!h| s for s’ > s. Since T comes from the multiplication
operator for the function a € H?, it is natural to expect the following interpolation type inequality.

Lemma 3.8 For c(||alls +1)/p < c(s") small enough, ||[(LE)7 hlls < 207 (|lalls [|h]]s + [|Alls)-
PrOOF For h € Hg let v := (LE)~1h. Then

(41)
[Blls = [[Drv + €Trvlls = [Drolls — el Trvlls = pllvlls — el Trolls -
Now || Trhl[s < C(s")(llalls |[2lls + lalls[[Rlls), Vh € Hg, (see e.g. [24]), hence
[Blls = (p = eC()all)vlls = eC()llalls (]l -

Therefore, if eC(s')(||al|s + 1)p~! < 1/2,

el < = (IRl +C(slally llols ) <

2
; (Il + lialls Nl

SRR

by Lemma 3.7. &

C(s")llalls

Lemma 3.9 VA, B C Qn, Vs’ > s, [[T4]lo < (T d(A,B))7 @D

Proor Using Holder inequality and exchanging the order of integration

2 s 1
ITARE = 32| 30wkt < 32 (3 ool Il 1= m)) (3 i)
keB meA keB meA meA
/ 1 C()IRIB 1l
< Yl (D e mP A+ [k =m[*)) > 2 < 2 (a0t
s’ s'—(d+1)
pOLERPS ) X T S s

where A :=d(4,B). &

Lemma 3.10 Let U € L(Hg, Hg) be such that, for some k >0, VA, B C R,

Gy

A
<L —r o — .
10zl < (1+d(A, B))~

Then, Vp > 1, VA,B C R,
Cipt|Ulp~

@), < L+ d(A,B)"
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PrOOF  We proceed by induction noting that, for p = 1, (42) is just our assumption. Now assume
that (42) holds up to order p. Define A := d(A, B) and, for some A € (0,1) to be specified later,
B'=N(B,ADA)N R, B” = R\B’. We have

@) = |onE s+ g U;;,, anPnonUé/nwn(Up)E lol1Tlo

Gy P UG

||U||o

by our hypothesis of induction. Now d(A4, B’) > (1 — M)A and d(B”, B) > AA. Hence

r+1

Rl p
H(UP—H)EHO = CIHUHS((I +(1 17 A)A)E + (1 i /\A)“) = (flJr'UAH)OK ((1 jA)n + p)\n ) '

Since minye(g,1)[(1 — A) ™% + p"TIA"] = (p 4 1)*™! we have proved (42) up to order p+ 1. ®

Lemma 3.11 VA, B C R with AN B =0, and for €||al|sp~ < ¢ small enough,

i3, < pzdfjﬁl))s"/a_'!i;w

Proor By the Newmann series expansion

(LBY™' .= (D + eTR)™ (1 + 3 (~1)?(eDR ' Tr)? )D;l (43)

p>1

and since ANB =0, [(LE)~ 1|4 = ZPEl(—l)pEP(Up)g[Dgl]ﬁ where U := D' Tg. Since |D3'|jo < p~ 1,

Jicetia, <, i 4)
p>1
Now, by lemma 3.9, VA, B C R,
O S, alls’
1UBllo = I[DR' 13T o < 7||Té4||0 < (s")llalls

p(1+d(A, B))
with k ;== s — (d + , Whence emma 3.
ith "—(d+1)/2, wh , by 1 3.10,

—1 —
C)lalwp UG Cs)llallp™ flall”"

”(Up)]g’”() < p(1+d(A, B))~ = pPd(A, B)®

using that [|U|lo = || D' Trllo < p~Yalls. By (44) we get

], < 5 5 [

proving the lemma. H

Solving the first equation in (40) gives
hi = (L)~ (br = Lizhs) (45)

and inserting into the second equation in (40) gives

LS~ LE(LE) L] hs = bs — LE(LE) "br. (46)

16



Our main task is to invert the selfadjoint operator
U:Hs— Hs, U:=L—LELRLY. (47)

According to (35) we get the orthogonal decomposition Hg = @4c4Hq, which induces a block decom-
position for the operator

U: @acato, = Sacato,, U= (Ugf> ca’ Uge = Los — L (LR) 'Ly
a,o

where « is the column index and o is the row index. We write

U=D+R with D:=diag,c4(U3*) and R = (U5 )aso -

3.5 Estimates of the blocks
We always assume in the sequel that e|lal|s/p < c. We first estimate the off-diagonal blocks Ug:, a#o.

Lemma 3.12 Vs' > s, Va # o
O alls
o (48)

Ul
Uq Mo < A ) -

ProOOF. The term Lg: = 5T3§ satisfies estimate (48) by lemma 3.9. To estimate the term L (Lg)*lL%“
we decompose R = Ry U Ry U R3 where

d(Qa, Q)
3

Accordingly we have the decomposition Hr = Hg, ® Hgr, ® Hpr, and so

LE (L)L ZZLR[ *ﬂngj.

=1 j5=1

d(Qe, Q0s)

Ry = {keR|d(Qa,k)< ;

},Rg::{keR|d(QU,k)< },Rg::R\(RluRg).

To bound each term in the sum above, we distinguish three cases.
First case: j > 2. In this case d(R;, Qo) > d(Qq, Qs)/3. Then, since LQ“ = sTI%f", by lemma 3.9,
eC(s)lalls

L —(il .
1250 < oo e

Using also | 0 < ¢lla||s and lemma 3.7, we get

! /
< 2llalls _ eC(Oallsy o eC()llalls

R;
HLS; [(L§>_1} ng 0= P d(Q Q, )/ d+1 = d(Q 0 )81_%

R;

Second case: j = 1,7 =1,2. Now d(R;, Q) > d(Q4a,)/3, and we proceed as in the previous case
(the small factor is ||L£:, llo)-

Third case: j =1, i=3. Now d(R1, R3) > d(Q4,Q)/3, and, by lemma 3.11,

Tl it

da+1

Using also || o0 < ellalls, we get estimate (48). m

(2%

In the sequel we assume

1 1
szs(d,T)::d; +d+6+T+1, (49)

where § > 0 is defined in (H2) and 7 > 0 is the parameter introduced in Proposition 3.1.
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Lemma 3.13 Under the assumptions of Proposition 3.1, V0 < e < go(7y) small enough, Ug:‘ is invertible
and [|(US*) " o < ey M7 with ¢ := 272,

ProOOF It is sufficient to prove that

UGz wllo > MT [wlo,  Vwe Hq, . (50)
For all w € Ho, C Hg, we have, recalling (47),
Qa Qoy _ (7S s R Ry(7R\=17S,  _
Uscw+ > Udew=Uw = (L} + L§)w — (LF + L§)(LF) "' Liw = Lyh (51)

oFa

where h:=w — (LE)"1L3w.
Step 1: >, , HUg:wHo < ella||sC(s)MIT1="||w|lo where v := (s — (d+1)/2) >0
Indeed, by lemma 3.12 (with s’ = s)

3 3 Cellalls|lwllo 2 1
Qo E
= ”UQU w”O < = (QQ,Q ) E25) < Cé‘”aHgH’w”O = (Ma I MU>V : (52)

Next, for each = € Q, C S, we define M(z) := M, and N(z) := |Q,|. Then

1
Z(M+M* ZN M+M())< > (Mo + J2])”

oFa z€5\Qa x€ZI+1 |z|<N

because N(x) > 1 and M (z) > |z|. Hence, for v > d + 1,

Z 1 C/+°° rddr < C(v)
= (M, + M,) My +71)Y = (14 My)v—d-1

proving, by (52), Step 1.

Step 2: || Lnhllo =277y M7 |lwlo-

Decompose h = h' + h" with h' := Pqo, h, h"" := Poe h and K := 2M, (recall the notation in (36)). We
have

ILxRllo > [Py Lahllo = | Lk llo — | Tox " [lo > 18]l — Clalls|IA"|lo, (53)

(2M )
by the assumptions on the eigenvalues of Ly in Proposition 3.1. Moreover since h = w — (LE)"'L3w
and w € Hq, C Hg,,

W' = —Pae (L)' Ljw = —[(Lg)_l]ng;L%“w.

Now d(Qq, RN Q%) > M,, from which we derive, arguing as in the proof of lemma 3.12, that

Cella
||hll||0 < || ||S

< WHU’HW (54)

Furthermore, since w € Hq, and h' —w = —Pq,,, (LE)"'L{w € Hg, we have ||h'|o = (||[h' — w||§ +
lwl[3)!/* = |lwllo and, (53), (54), imply

ewly _ C2llal? el C'e?al 2 g
|£xhllo > - Jwllo > (1- Jzo

(2Mo)™  ppE(dtD/2 (2M,)™ M @D [[wllo

«

because s > 7 + (d + 1)/2, and provided that ey~ is small enough.

Noting that v > d 4+ 1 — 7 (because s > s(d, 7)), we deduce (50) from (51), Step 1 and Step 2, for
go(7y) small enough.
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3.6 Inversion of U and proof of Proposition 3.1

By lemma 3.13 the operator D := diagaeA(ng) is invertible, and we write
U=D+R=DI+D 'R).

For the presence of the “small divisors”, D~! acts as an unbounded operator.

Lemma 3.14 Vs' > 0, |D7th|ly < K(s')y N7 ||hl||s, Vh € Hq, .

PROOF. For h =3 . 4 ha, ha € Ha,,

B (P4) o B S,CMZT
DR =D UG hallZ <) MZ(US)  hallg < D M2 72“ Ihall3

acA
by lemma 3.13. Then
2§ MR lhally () 22 . < ) e
[ FEESY) M s > M hall3 < =52 NT(RZ
acA o acA

because M, < N. n

By lemma 3.12 the operator R acts somehow as a multiplication operator. Nevertheless, using the
separation property (H2) we prove that D~'R is L2-bounded and, using also the dyadic property (H1),
we prove an interpolation type estimate for D~!'R in high Sobolev norm.

Lemma 3.15 Assume (49). Then
D7 Rhllo < K|l (55)
and, ¥s' > s(d, 1), setting po :=7+3(d+1)/2 >0,
1D Rl < ()~ (Il llalls + lalls o ") (56)

PrOOF. We shall use several times the following bound, proved as in the first step of the proof of Lemma
3.13: if A> 0 and n > d+ 1, then

L Cn)
G;‘l (A + M,)n < (1+ \)n—@@+1) (57)

ha, we have

D I'Rh = Z We with Wy = (U&’)_1 ( Z Ug:ha) € Hq, .

ceA a#o

Given h ="

acA

From lemmas 3.13, 3.12 and (H2), we get, for v :=§(s — (d+1)/2),

MT
== (21082 lollalo) (58)

aFo

Mg Cellalls
07((; m”%”o)

5 1 /2 e C||a||
O ||al|s||hlloMT - )<= hllo,
lallllods (3 o) = ey e e

IN

1w o

IN

IN
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by the Cauchy-Schwartz inequality and (57). Hence

2 1 1/2 e
D 'Rh :( Wy 2) gcf( ) alls|lhllo < K|k
[ llo (;H o 5 ZU: (15 M)z lalls[IRlo V|| l[s1lllo

still by (57) (note that v > 7+ d + 1 by (49)). This proves (55).
In order to prove (56) we observe that:

i) if M, > M, /4 then

; (P4) M (H1)  MF Ces® ||al|
s Qo Qo o Qq s o S
M3 UGz Nollhallo < U8 oo el < NUR2 02" ez el < (iS5 Mhalls

using also lemma 3.12 and (H2).
i) if M, < M, /4 then, by (H1), dist(Qq,Qs) > M, /4, and, by Lemma 3.12,

, + eC(s")]alls
M2 U8 ollhallo < 2y — 2SNl < () llalle M D2 o
d(Qng)S )
Therefore, from (58),
(P4) ’ £ a s h/a s/
ol 'S M lwolo <ot ap( 3 Mallale o ppeene S )
v a,]WaZMg/4( o+ M) a, My <M, /4
e llalls bl .
< C(s );Ma (W + llalls Mg Hh”O)a (59)
by the Cauchy-Schwartz inequality and (57). Finally
DRy = (3 s |2)?
occA
(59) nE& 1 1/2 arta(arn))/?
< 0@ [(Xymam) lalkdnle+ (3204 )" llalls 1lo]

(57) £ .
< KGO (Inllolall + lall N7 )

proving (56). W

By (55), for ey~!||a||s small, the operator U is invertible, and, using (56), we prove the following
interpolation type inequality for U~!.

Lemma 3.16 Vs' > s(d, 7), there is ¢(s') > 0 such that, if ey~ (|lal|s + 1) < c(s), then
IU= Rl < K (s )y N*(lklls + llalls [Rllo) . Vh € Hs,
with p =27+ 3(d +1)/2.

PRrROOF. If ¢llal|sy~! is small enough then, by (55), [[D™'R|lo < 1/2 and I + D~'R is invertible,
(I + D7*R)~Y|o < 2. Then, arguing like in the proof of Lemma 3.8, we derive from (56) that for
e(]lalls + 1)y~ < ¢(s’) small enough,

I(Z + D7 R) " hlls < 2[|hfls + flalls [[AlloN .
Using lemma 3.14 the thesis follows. B

PROOF OF PROPOSITION 3.1 CONCLUDED. Lemma 3.16, (46), (45) and lemma 3.8 yield (37). We use
also that ally = [(@uF)(t, 2, )]l < C(s")ully, by property (P2) applied to 9, F. m
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4 Separation properties of the singular sites

In this section we verify, assuming only the standard Diophantine condition (7) and the nonresonance
condition (2), that, for p < p(7), there is a partition of the singular sites like in (35) verifying (H1)-(H2)
with § depending only on d. The proof follows essentially the scheme of [6] except in lemmas 4.1 and 4.4.

Consider the bilinear symmetric form ¢, : R“! x R¥! — R defined by
@w(xaz/) =7 'j/ - ('UQIl/a Vo = (la])v x’ = (l/aj/) € R xR?

and the corresponding quadratic form
Qw(x) = (Pw(xax) = |.7|2 - w2l2 :
A vector z = (1,§) € Z x Z% is said “weakly singular” if |Q,(x)| < 1+ |m]|.

Definition 4.1 A sequence xo, ...,z € Z4T1 of distinct, weakly singular, integer vectors satisfying, for
some B > 2, |zp41 —ax| < B,Vk=0,...,K — 1, is called a B-chain of length K.

Theorem 4.1 If w? satisfies (7), then any B-chain has length K < B¢ /" for some C := C(d) > 0 and
r:=r(d) > 0.
Remark 4.1 Theorem 4.1 has been proved in [6], see lemma 2.10, assuming the stronger Diophan-
tine condition |Zjli% a;w¥ > (3, la;)=C, Y(a;) € ZY9HN\{0} and in [10], lemma 8.7, assuming
d+1 ; _
| 2520 a0 | > (2 la;1) ¢, V(a;) € Z4H\{0}.
The proof of Theorem 4.1 is split in several lemmas.

Given integer vectors f; € Z4t1, i =1,...,n, 1 <n < d+ 1, linearly independent on R, we consider
the subspace F' := Spang{fi,..., fn} of R and the restriction @u|F of the bilinear form ¢, to F,
which is represented by the symmetric matrix

Aw = {pu(fi, fir) Y= € Mat,(R).
Introducing the symmetric bilinear forms
R(z,z'):=7-7 and  S(z,2'):=1,
we write
Yo =R —w?S and A, =R —w?S

where R := {R(fi, fi)}lv—1 = (Ba,...,Rn) , S :=={S(fi, fi)}]i=1 = (S1,..., Sn) are the matrices that
represent respectively R|p and Sjp in the basis {f1,..., f.}. Note that the matrices R, S have integer
coefficients. Here R;,S; € Z™, i = 1,...,n denote the column vectors respectively of R and S. The
following lemma is the main difference with respect to [6].

Lemma 4.1 Assume that w? satisfies (7). Then A, is invertible and

5n—2
Azt < 2 (ma 141) " (60)

.....

PrOOF. The matrix S has rank at most 1 because it represents the restriction to F' of a bilinear form
of rank 1. Since any two columns of S are colinear, the development in w? of detA, reduces to

det A, = det(R; — w?Sy,..., R, — w?S,) = det(Ry,..., R,) — w? Zdet(Rl, oy Siy . Ry (61)
i=1

Therefore det A, = P(w?) is a polynomial in w? of degree at most 1, with integer coefficients since det R,
det(Ry,...,Si,...,Ry) € Z. Furthermore P(-) is not identically zero because P(—1) = det(R + S) is
positive (the matrix R 4 S being positive definite).
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By (61), if det R = 0 then |det A,| > w?, and, if det R # 0, since w? satisfies (7), |det A,| >
v|det R|=%/2. Since R+ S = YF F with F = (f1,..., fn), we have 0 < det R < det(R + S) = (det F)? <
If1l2. . | ful? < M?", where M := max;—1 ., |fi|. Hence

v

By (7), w? > =, and (62) holds in both cases. Applying the Cramer rule

B 1 62 ¢(n) B
Al < c(n) M2 L p3n+2(n—1)
(ATl < ey < S

whence (60) follows. W

The remainder of the proof follows [6] (although some details are different). We report it for com-
pleteness.
By lemma 4.1 the bilinear form ¢,z is non-degenerate and we decompose

R = F@ F-%  where  Fl¢w .— {x eR | pu(z, f) =0, Yfe F} .

We denote by Pr : R4t1 — F the corresponding projector onto F.

Lemma 4.2 Let xg,...,71 be a B-chain. Define G := Spang{z; —z | i,k =0,...,L} C R4, Then,
calling n := dimG,

Potey) < Wepprtt, vi—o. L (63)
Y
Proor. For all ¢ # j, by bilinearity,
Qu(@i) = Qu(z; + (zi — x;)) = Qu(w;) + 20w (x), xi — x;) + Qu(@i — ;). (64)

Since |z; — x| < |i — j|B and |Qu(z;)|, |Qu(z;)] < 1+ |m|, we get

(64)
1200 (xj, 2 —x;)| < 24 2/m| + Cla; — x> < 2+ 2|m| + Cli — j|*B* < C'L*B2. (65)

According to the decomposition R*! = G @ G1%~ we write xj = y; + z; with y; := Pg(z;) € G and
zj € GLew,

Fixed any j € [0,L] we have G = Spang{z; —z; ; i = 0,...,L}. Let us extract from {z; — z;,
i=0,...,L}, abasis {f1,..., fn} of G. We develop y; = >, a;; f; whence

at,j <Pw(f1733j)
A,a=0b where a:= . , b= . , (66)
a”vj @w(fmxj)
using that @y (fim,Y;) = Pu(fm, ;) because z; € GL%«. By (65), |b| < CL?B? and, by lemma 4.1,
5n—2
< Az < L max (7)™ 22 < gy
vy 1=1,...,n vy
since |f;| < LB. Finally, |y;| < >, |a ;|| fi] < (e(n)/v)(LB)°" LB, which gives (63). ®
Lemma 4.3 Let xzq,...,xx be a B-chain. Let 1 < L < K be such that
Vji=0,...,K, SpanR{xi—zj | ] — j] SL} :SpanR{x,- —a | i,l:O,...,K} = F. (67)

Then, for p, :=5n+ 1, n:=dimF,
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e 0) |Pr(z;)] < "%’”(LB)P", Vi=0,... K
(n)

® b)|zj, — x| < 5

(LB)", Vi1, j2 € {0,...,K};

R P
)K<7 (LB)

PROOF. For every fixed j € {0,..., K} apply lemma 4.2 to the B-chain {z;} with |i —j| < L,i €
{0,...,K}. By (67) we have G := Spang{x; — zx | |¢ — j|, |k — j| < L} = F, and therefore, by (63) we

deduce a).
Now, by the definition of F, Vji,j2 € {0,..., K}, we have z;, — x;, € F and therefore by a),

c(n) n
|25, — x5, | = |Pp(zj, — 25) < |Pr(z,)] + [Pr(z),)] < 7(LB)5 i
which is b).
Finally, Vj = 1,..., K, by b), |z; — zo| < (¢(n)/v)(LB)?", whence z; belongs to the n-dimensional
ball centered at xo with radius (C'(n)/~v)(LB)?~. The number of integer vectors inside such a ball is less
or equal to (C'(n)/~4™)(LB)P»™ and we deduce ¢). B

PROOF OF THEOREM 4.1 CONCLUDED. Define F' := Spang{z; — x; | i,/ =0,..., K} C R4

If dimF = 1 then the B-chain xy,...,xx satisfies (67) with L = 1 because all the z; are distinct. By
c) we get K < (c¢/v)BS. Next, suppose by induction that Theorem 4.1 holds if dimF < n, n < d. We
want to prove Theorem 4.1 when dimF =n + 1.

Fix L = [K'/*] with a := 2p,41(n + 1). If the B-chain o, ...,z satisfies (67), then, by c),

K < c(n+1) (LB)Pn+1("+1) < c(n +1) VEBPri(ntl) . K< c(n + 1)BQPn+1(n+1) < BC™ .
— ,yn+1 - ,yn+1 — ,72(n+1) - ,yr(n)
Otherwise, there exists j € {0,..., K} such that dimSpang{z; —z; | |¢ — j| < L} < n. Consider
the B-chain {x;} with |i — j| < L whose length is at most 2L. By the inductive assumption, 2L <
BEM=1) J4r(=1) "swhence K < (L+41)* < ¢BC(n=1) Jyar(n=1) < BC(™) /47(") Tn both cases K < BC /"

for some C := C(n), r =r(n). &

Finally we show how to get the required decomposition of the singular sites in clusters.

Lemma 4.4 Assume (2) and (7). ¥y € (0,1), if p < p(7) := " DF1/8 there exists a decomposition of
the singular sites
S = {(l,j)eQN : |w212—Aj\<p}= U 9. (68)
acA
in clusters, like in (35), satisfying properties (H1)-(H2) with § := 1/2(C(d)+1) (the constants C(d), r(d)
are those of Theorem 4.1).

PROOF. We introduce the following equivalence relation.

Definition 4.2 Given § > 0, two integer vectors x,y € S are said equivalent if there exist x; € S,
1=0,1,...n, with xg = x, v, =y and |11 — 2] < (21| + |z41])?, VI

Chosen ¢ := 6(d) := 1/2(C(d) + 1), where C(d) is the constant which appears in Theorem 4.1, we
get a decomposition of S in disjoint equivalence classes €, as in (68). To verify that each 2, is dyadic,
consider z, € Q such that |z,| = max.cq, 2| = M,. Each x € ,, is connected to z, by a B-chain with
B = (2M,)%. Hence, by Theorem 4.1, there are no more than BY /4" elements in this chain. Therefore
Vr € Q,

T

BCB 2M. §(C+1)
VA CL ) e Y
zyT ,y'r

|z > |2a| = ¢ >

7’

=
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provided that M, > 8/4?". As a consequence, (2, satisfies the dyadic property (H1) whenever M, >
8/7%. Now, if [z] = |(1, )] < 8/7?" then by (2)

3r+1
3 7
(87727*)3/2 = 8

W =X >

As a result, if p < p(7) := 43" *1/8 then there is no singular site in the open ball of center 0 and radius
8/, and all the €, satisfy M, > 8/7?" and are dyadic.
To prove (H2) consider z, € Q4, z, € Q, such that d(Qq, Q)= |24 — Z|. Since z, & Q,

|xa - .’170-| > (|xa| + |xo|)6 Z (ma + ma)é Z (Ma + Mo)6

M| =

by (H1), that is (H2). m
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