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Abstract: We prove the existence of Cantor families of periodic solutions for nonlinear wave equations
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PDEs. In the latter case our theorems generalize previous results of Bourgain to more general nonlinear-
ities of class Ck and assuming weaker non-resonance conditions. Our solutions have Sobolev regularity
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1 Introduction

The search for periodic solutions of nonlinear wave equations has a long standing tradition. The first pio-
neering results of Rabinowitz [23] and Brezis-Coron-Nirenberg [5] proved, by means of global variational
methods, the existence of periodic solutions for 1-dimensional nonlinear wave equations, with a rational
frequency. The reason for such a condition is that the other frequencies give rise to a “small divisors”
problem type, due to complex resonance phenomena.

On the other hand, the existence of periodic and quasi periodic solutions in a neighborhood of an
elliptic equilibrium, for positive measure sets of frequencies, was also considered. In this direction, the
first results have been proved by Kuksin [16] and Wayne [25] for one dimensional, analytic, nonlinear wave
equations. The main difficulty, namely the presence of arbitrarily “small divisors” in the expansion series
of the solutions, is handled via KAM theory. The pioneering results in [16]-[25] were limited to Dirichlet
boundary conditions because they required the eigenvalues of the Laplacian to be simple (the square
roots of the eigenvalues are the normal modes frequencies of small oscillations of the string). In this case
one can impose strong non-resonance conditions between the “tangential” and the “normal” frequencies
of the expected KAM torus (the so-called “second order Melnikov” non-resonance conditions) to solve
the linear homological equations which arise at each step of the KAM iteration, see also [22]-[18]-[17].
Such equations are linear PDEs with constant coefficients and can be solved by standard Fourier series.
For periodic boundary conditions, where two consecutive eigenvalues are possibly equal, the second order
Melnikov non-resonance conditions are violated.

In order to overcome such limitations, Craig and Wayne [11] introduced the Lyapunov-Schmidt de-
composition method for PDEs and solved the small divisors problem, for periodic solutions, with an
analytic Newton iteration scheme. Such an approach is particularly designed for dealing with resonant
situations. On the other hand, the main difficulty of this strategy lies in the inversion of the linearized
operators obtained at each step of the iteration, and in achieving suitable estimates for their inverse in
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Avignon, France , philippe.bolle@univ-avignon.fr.
1Supported by MIUR Variational Methods and Nonlinear Differential Equations.

1



high (analytic) norms. Indeed these operators come from self-adjoint linear PDEs with non-constant
coefficients and are small perturbations of a diagonal operator having arbitrarily small eigenvalues. To
solve this problem Craig and Wayne imposed, for positive measure sets of parameters, lower bounds for
the moduli of the eigenvalues (in particular, all the eigenvalues must be non-zero). These assumptions
imply upper bounds for the operatorial L2-norm of the inverse operators. Next, in order to get estimates
on the inverse in analytic norms, Craig and Wayne developed a coupling technique inspired by the meth-
ods of Frölich-Spencer [14] in the Anderson localization theory, see also [10]. Key ingredients to achieve
estimates for the inverse operators in high norms are the following assumptions on the unperturbed op-
erator: (i) “separation properties” between clusters of singular sites (that is between the Fourier indexes
of the small divisors), (ii) properties of “well-localization” of the eigenfunctions with respect to the ex-
ponentials. These two facts, together with the analyticity of the functions, imply a very weak interaction
between the singular sites. The second requirement (ii) is free when working with periodic boundary
conditions. On the other hand, since the first requirement (i) can be obtained by imposing only the
“first order Melnikov” non-resonance conditions, the Craig-Wayne approach works perfectly also in case
of degenerate eigenvalues. In [11] the “clusters of small divisors” have a fixed bounded size: it is the case
for one dimensional nonlinear wave and Schrödinger equations with periodic boundary conditions, see
also [10].

The main difficulty in extending these results to PDEs in higher spatial dimensions is that the eigen-
values of the Laplacian can be highly degenerate, forming clusters of increasing size which tends to
infinity.

This further problem has been first solved by Bourgain [6] for nonlinear wave equations in dimension
d ≥ 2 with periodic boundary conditions, extending the Craig-Wayne techniques. These results hold for
analytic (polynomial) nonlinearities and prove the existence of periodic solutions having Gevrey regularity
both in time and space. Suitable separations properties between the clusters of small divisors are imposed
in [6] assuming a strong Diophantine-type condition, see remark 4.1. Then, using repeatedly the resolvent
identity (see [7]), Bourgain proves a sub-exponentially fast decay for the off-diagonal terms of the inverse
matrix. This estimate on the speed of decay gives an upper bound for the inverse matrix in Gevrey
norm. For this step the high (Gevrey) regularity of the given functions is exploited. Similar results for
the nonlinear Schrödinger equation have been proved in [7, Appendix 2], but, in that case, the separation
conditions for the clusters of small divisors are more simply obtained.
The main result in [7] actually proves the existence also of quasi-periodic solutions in dimension d = 2. See
also [8] about the construction of quasi-periodic orbits for the nonlinear wave and Schrödinger equations
in any spatial dimension.

In the present paper we prove the existence of periodic solutions for higher dimensional nonlinear
wave equations for merely differentiable nonlinearities and under weaker non-resonance conditions than
in [6]. We consider both forced and autonomous PDEs. In the forced case Theorem 1.1 is the first
higher dimensional result, and extends [21], [13], [2], which are valid for 1-dimensional equations. In the
autonomous case Theorem 1.2 generalizes the result of Bourgain [6]. Our solutions have the same Sobolev
regularity both in time and space.

In order to prove our results we need all the power of the differentiable Nash-Moser theory. In
particular, the key point of the iterative process lies in the “a-priori” bounds (15) for the divergence of
the high Sobolev norms of the approximate solutions; we refer to [4] for further explanations and for a
comparison with the approach of [11].

Concerning the linearized operators obtained at each step of the Nash-Moser iteration, it is sufficient to
achieve just interpolation type estimates for their inverses, see the key property (P5). Our approach works
also in presence of possibly very large clusters of small divisors: the “dyadic” condition (H1) (see section
3.2) is weaker than the corresponding ones in [7] (Lemma 7 of Appendix 2) and in [15]. Furthermore
(H1) could also be considerably weakened, see remark 3.1, even though not completely eliminated, see
the discussion below and remark 3.2. A point of interest is that, in presence of possibly very large clusters
of small divisors, the use of Sobolev norms, instead of analytic or Gevrey ones, used in [11]-[6], makes the
estimates easier. The most intuitive reason is that a lower bound for the moduli of the eigenvalues yields
immediately a L2-bound for the inverse matrix, and the Sobolev norms are closer to the L2-norm than the
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Gevrey or analytic norms, see lemma 3.1 and related comments. Clearly, working with functions having
a mere Sobolev regularity, has the drawback of a slow (polynomial) decay off the diagonal of the matrix
elements of these operators. This makes the interactions between their singular clusters rather strong.
Nevertheless a polynomial decay of large enough order (connected to some smoothness assumption) is
sufficient.

On the other hand, we underline that it does not seem sufficient to have only lower bounds for the
moduli of all the eigenvalues without some separation properties between the singular clusters. This
information, by itself, would give a too weak estimate for the norm of the inverse matrix, and the Nash-
Moser scheme would not converge, see remark 3.2. This is also related to a famous counter-example of
Lojasiewicz-Zehnder [19] concerning the optimal conditions in an abstract Nash-Moser implicit function
theorem.

Since the aim of the present paper is to focus on the solution of the small divisors problem in presence
of large clusters and with differentiable nonlinearities, we have considered model cases in which the
bifurcation equation arising with the Lyapunov-Schmidt reduction, or is not present (as for Theorem 1.1)
or it is rather simply solved (as for Theorem 1.2).

Before concluding this introduction, we mention that the KAM approach has been extended by
Chierchia-You [9] to prove the existence of quasi-periodic solutions for one dimensional wave and Schrödinger
equations in case of periodic boundary conditions (in particular, their theorem covers the result of [11]),
and by Eliasson-Kuksin [12] for higher dimensional nonlinear Schrödinger equations. We also mention
that Gentile-Procesi [15] have recently obtained the existence of periodic solutions for higher dimensional
nonlinear Schrödinger equations by the Lindstedt series method. We remark that in all the previous
results the nonlinearities are required to be analytic and the solutions are analytic in time.

Acknowledgments: The authors thank P. Baldi, L. Biasco and M.Procesi for interesting comments.

1.1 Main results

Let us consider d-dimensional nonlinear wave equations with periodic boundary conditions of the form{
utt −∆u+mu = εF (ωt, x, u)
u(t, x) = u(t, x+ 2πk) , ∀k ∈ Zd

(1)

where the forcing term F (ωt, x, u) is 2π/ω-periodic in time2, 2π-periodic in each spatial variable xi,
i = 1, . . . , d, m ∈ R and ε > 0 is a small parameter.

We consider the non-resonant case when

|ω2l2 − λj | ≥
3γ

max(1, |l|3/2)
, γ ∈ (0, 1) , λj := |j|2 +m, ∀ (l, j) ∈ Z× Zd . (2)

Note that in (2), the exponent 3/2 is fixed for simplicity of exposition and could be replaced by any
α > 1. For all j such that λj ≥ 0 define ωj :=

√
λj . Assumption (2) means that the forcing frequency ω

does not enter in resonance with the normal mode frequencies ωj of oscillations of the membrane.
By standard arguments, (2) is satisfied for all ω in [ω̄1, ω̄2] but a subset of measure O(γ).
Concerning regularity we only assume that F ∈ Ck(T×Td ×R; R) for some k large enough.
If F (t, x, 0) 6≡ 0 then u = 0 is not a solution of (1) for ε 6= 0.

• Question: do there exist periodic solutions of (1) for positive measure sets of (ε, ω)?

Normalizing the period, we look for 2π-periodic in time solutions of

ω2utt −∆u+mu = εF (t, x, u) (3)

2That is F (· , x, u) is 2π-periodic.
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(where F is 2π-periodic in t) in the real Sobolev space3

Hs := Hs(T×Td; R) :=
{
u(t, x) :=

∑
(l,j)∈Z×Zd

ul,je
i(lt+j·x) , u∗l,j = u−l,−j

| ‖u‖2s :=
∑

(l,j)∈Z×Zd

|ul,j |2 max((l2 + |j|2)s, 1) < +∞
}

for some s > (d+ 1)/2.
We recall that for s > (d+ 1)/2 we have the continuous inclusion Hs(Td+1) ↪→ L∞(Td+1) and Hs is

a Banach algebra with respect to the multiplication of functions.

Theorem 1.1 Fix 0 < ω̄1 < ω̄2. There is s := s(d), k := k(d) ∈ N, such that:
∀F ∈ Ck(T×Td ×R), ∀γ ∈ (0, 1), there exist ε0 := ε0(γ), K,C > 0 (independent of γ), a map

ũ ∈ C1([0, ε0]× [ω̄1, ω̄2];Hs) with ‖ũ(ε, ω)‖s ≤ Kγ−1ε , ‖(Dε,ωũ)(ε, ω)‖s ≤ Kγ−1 ,

and a Cantor like set A∞ ⊂ [0, ε0]× [ω̄1, ω̄2], of Lebesgue measure

|A∞| ≥ ε0 (|ω̄2 − ω̄1| − Cγ) , (4)

such that, ∀(ε, ω) ∈ A∞, ũ(ε, ω) is a solution of (3).

Note that, as the freely chosen small parameter γ tends to 0, the constant ε0(γ) tends to 0, and the
bounds on ũ get worse, but, as a counterpart, the ratio |A∞|/ε0(ω̄2− ω̄1) tends to 1, i.e. the set A∞ has
asymptotically full measure.

The conditions defining A∞ are (2) and (7) (which are independent of ε), plus infinitely many others,
which depend on the nonlinearity, and are required to get the invertibility of the linearized operators
obtained at each step of the Nash-Moser iteration (see Theorem 2.1).

Remark 1.1 The non-resonance condition (2) implies m 6= 0. Note that if m < 0 the equilibrium u = 0
is not completely elliptic. In the case m = 0, under some additional assumptions on F , a result similar to
Theorem 1.1 holds assuming condition (2) only for all (l, j) 6= 0. Then we perform a Lyapunov-Schmidt
reduction according to the decomposition Hs = R⊕Hs

0 where Hs
0 denote the Sobolev functions with zero

mean value.

We develop in detail all the computations to prove Theorem 1.1. The same techniques can be used to
prove the existence of Cantor families of small amplitude periodic solutions for autonomous d-dimensional
nonlinear wave equations of the form{

utt −∆u+mu = aup + r(x, u)
u(t, x) = u(t, x+ 2πk) , ∀k ∈ Zd

(5)

with p ≥ 3 odd integer, a ∈ R, a 6= 0, and

r(x, u) ∈ Ck(Td ×R) , k ≥ p , r(x, 0) = . . . = ∂pur(x, 0) = 0 and r(−x, u) = r(x, u) . (6)

The bounded solutions of the linearized equation utt−∆u+mu = 0 which are even in time and in x are

u =
∑

j∈Zd,|j|2+m≥0

cos(ωjt)Aj cos(j · x) , Aj ∈ R , ωj :=
√
|j|2 +m.

Fixed j0, we aim to prove the existence of small amplitude periodic solutions of the nonlinear equation
(5) with frequencies close to ωj0 . Assuming that m is irrational, the normal mode frequencies ωj com-
mensurable with ωj0 satisfy |j| = |j0|. We shall assume the stronger hypothesis that m is Diophantine,
to have a quantitative non-resonance condition like

|ω2
j − l2ω2

j0 | ≥
γ

(|l|+ 1)τ
, ∀ (|j|, |l|) 6= (|j0|, 1) ,

3The symbol z∗ denotes the complex conjugate of z ∈ C.
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similar to (2), see [6].
Rescaling the amplitude u 7→ δu, δ > 0 and normalizing the period, we look for solutions of

ω2utt −∆u+mu = εg(δ, x, u) , ε := δp−1 , g(δ, x, u) := aup + δ−pr(x, δu)

in the subspace Hs
even := {u ∈ Hs | u(−t,−x) = u(t, x)}. The regularity property of the composition

operator induced by g on Hs
even are proved as in [4].

Theorem 1.2 Let p ≥ 3 be an odd integer and assume (6). Suppose m > 0 is Diophantine. Fix j0 ∈ Zd.
There is s := s(d), k := k(d) ∈ N such that, for all r ∈ Ck, ∀γ ∈ (0, 1), there exist δ0 > 0, Āj0 ∈ R, a
curve

u ∈ C1([0, δ0];Hs
even) with ‖u(δ)− δĀj0 cos(t) cos(j0 · x)‖s = O(δ2) ,

and a Cantor set C ⊂ [0, δ0] of asymptotically full measure such that, ∀δ ∈ C, u(δ) is a solution of
ω2utt −∆u+mu = up + r(x, u) with ω2 = ω2

j0
− sign(a) δp−1.

Theorem 1.2 generalizes Bourgain’s result in [6] to the case of differentiable nonlinearities, when the
leading nonlinear term is aup, p ≥ 3 and for irrational frequencies satisfying only (7). Furthermore the
existence result of theorem 1.2 holds for a Cantor set C of asymptotically full measure. This requires to
write the dependence with respect to γ in the separation arguments of section 4 (used also in Theorem
1.1).

As said in the introduction the most difficult step in the proof of both Theorems 1.1-1.2 is to get
estimates for the inverse linearized operators which arise at each step of the Nash-Moser iteration. For
this task some “separation properties” for the “singular sites” seem required. For one dimensional wave
equations, by a simple argument in [11]-[10], it is sufficient to assume that ω2 is Diophantine, namely

|ω2q − p| ≥ γ

max(1, |p|3/2)
, ∀(q, p) ∈ Z2 \ {(0, 0)} (7)

with γ ∈ (0, 1). On the other hand, such separation properties are far from obvious in higher spatial
dimension. They have been obtained by Bourgain in [6] under strong non-resonance conditions of Dio-
phantine type for ω2, see remark 4.1. In section 4 we shall obtain the same separation properties assuming
only (7). Also in (7), the exponent 3/2 is fixed only for simplicity and could be replaced by any α > 1.

A final comment regarding the boundary conditions. The case of Dirichlet boundary conditions on a
rectangle (with some oddness assumption on the nonlinearity) works similarly to the setting of the present
case. The eigenfunctions of the unperturbed operator are still linear combinations of exponentials and the
high order regularity of u has a straightforward translation into the behavior of its Fourier coefficients,
i.e. of its components in the orthonormal basis of the eigenfunctions. On the contrary, in the case of
a general bounded domain Ω ⊂ Rd, the eigenfunctions of the Laplacian do not possess such a good
property, even if they form an orthonormal basis of H1(Ω). Therefore the existence of periodic solutions
is this case is completely open (but see [1] in the case of an integral nonlinearity which does not mix the
spatial modes).

Notations: N (A, η) denotes the η-neighborhood of a subset A of a normed space; z∗ is the complex
conjugate of z ∈ C; the symbol [x] ∈ N denotes the integer part of x ∈ R. We denote by L(HA, HB) the
set of continuous linear operators from HA to HB . d(A;B) := inf{|a− b| , a ∈ A, b ∈ B} is the distance
from the set A to the set B.

2 The Nash-Moser scheme

Consider the orthogonal splitting
Hs = W (Nn) ⊕W (Nn)⊥

where
W (Nn) =

{
u ∈ Hs

∣∣∣ u =
∑

|(l,j)|≤Nn

ul,j e
i(lt+j·x)

}
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W (Nn)⊥ =
{
u ∈ Hs

∣∣∣ u =
∑

|(l,j)|>Nn

ul,j e
i(lt+j·x)

}
with4

Nn := [eλ2n ] , λ := lnN0 . (8)

In the proof of Theorem 2.1 we shall take λ, i.e. N0 ∈ N, large enough. We denote by

PNn : Hs →W (Nn) and P⊥Nn : Hs →W (Nn)⊥

the orthogonal projectors onto W (Nn) and W (Nn)⊥.
The convergence of the Nash-Moser scheme is based on properties (P1), (P2), (P3), (P4), (P5) below.
The first three properties are standard for the composition operator f : Hs → Hs defined by

f(u)(t, x) := F (t, x, u(t, x))

where F ∈ Ck(T×Td ×R; R) with k ≥ s+ 2 and s > (d+ 1)/2.

• (P1) (Regularity) f ∈ C2(Hs;Hs) and D2f is bounded on {‖u‖s ≤ 1}.

• (P2) (Tame) ∀ s ≤ s′ ≤ k, ∀u ∈ Hs′ such that ‖u‖s ≤ 1, ‖f(u)‖s′ ≤ C(s′)(1 + ‖u‖s′).

• (P3) (Taylor Tame) ∀s ≤ s′ ≤ k − 2, ∀u ∈ Hs′ such that ‖u‖s ≤ 1, ∀h ∈ Hs′ ,

‖f(u+ h)− f(u)−Df(u)h‖s′ ≤ C(s′)(‖u‖s′‖h‖2s + ‖h‖s‖h‖s′)

where [Df(u)h](t, x) = (∂uF )(t, x, u)h(t, x). In particular, for s′ = s,

‖f(u+ h)− f(u)−Df(u)h‖s ≤ C‖h‖2s . (9)

We refer to [20] for the proof of (P2), see also [24]. Properties (P1) and (P3) are obtained similarly.
Furthermore, by the definitions of the spaces Hs and the projectors PN , we have:

• (P4) (Smoothing) ∀N ∈ N\{0}, ‖PNu‖s+r ≤ Nr‖u‖s , ∀u ∈ Hs

‖P⊥N u‖s ≤ N−r‖u‖s+r , ∀u ∈ Hs+r .

The key property (P5), proved in section 3, is an invertibility property for the linearized operator

LN (ε, ω, u(ε, ω))[h] := Lωh− εPNDf(u(ε, ω))h , ∀h ∈W (N) (10)

where
Lω := ω2∂tt −∆ +m

and u ∈ C1([0, ε0]× [ω̄1, ω̄2],W (N)) with ‖u‖C1(s) := sup[0,ε0]×[ω̄1,ω̄2] ‖u(ε, ω)‖s + ‖Dε,ωu(ε, ω)‖s.
Let

G :=
{

(ε, ω) ∈ [0, ε0]× [ω̄1, ω̄2]
∣∣∣ ω satisfies (2) and (7)

}
.

• (P5) (Invertibility of LN) ∃µ := µ(d), s := s(d), C̄, c, K, such that ∀γ ∈ (0, 1), ∀s′ ≥ s, ∀C > 0,
there exist ε0 := ε0(γ, s′, C) > 0 with the following property:
∀N , ∀u ∈ C1([0, ε0]× [ω̄1, ω̄2],W (N)) with ‖u‖C1(s) ≤ Cγ−1, there is a set GN (u) ⊂ [0, ε0]× [ω̄1, ω̄2]
such that, if (ε, ω) ∈ N (GN (u), γN−σ), σ := µ+ 3, then LN (ε, ω, u(ε, ω)) is invertible and∥∥∥L−1

N (ε, ω, u)[h]
∥∥∥
s′
≤ K(s′)

γ
Nµ
(
‖h‖s′ + ‖u‖s′‖h‖s

)
, ∀h ∈W (N) , (11)

∥∥∥L−1
N (ε, ω, u)[h]

∥∥∥
s
≤ K

γ
Nµ‖h‖s . (12)

Moreover, if N ≤ c(γε−1
0 )2/3 then GN (u) = G, and if ‖u1 − u2‖s ≤ N−σ, then

|GcN ′(u2)\GcN (u1)| ≤ C̄ γε0

N
, ∀N ′ ≥ N . (13)

4The symbol [ · ] denotes the integer part.
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Theorem 2.1 (Nash-Moser) Let 0 < ε ≤ ε0(γ) be small enough (possibly depending on d, F , ω̄1, ω̄2).
There exists a decreasing sequence of subsets of “non-resonant” parameters

. . . ⊆ An ⊆ An−1 ⊆ . . . ⊆ A1 ⊆ A0 := G ⊂ A := [0, ε0]× [ω̄1, ω̄2]

and a sequence of functions ũn(ε, ω) ∈ C1(A,W (Nn)) satisfying ‖ũn‖s ≤ Kεγ−1, ‖Dε,ωũn‖s ≤ Kγ−1,
such that, ∀n, if (ε, ω) ∈ N (An, γN−σn /2) then ũn(ε, ω) is a solution of

(PNn) Lωu− εPNnf(u) = 0 .

On the Cantor like set A∞ := ∩n≥0An, which satisfies the measure estimate (4), the sequence (ũn(ε, ω))
converges in Hs to a solution ũ(ε, ω) of equation (3) satisfying ‖ũ‖s ≤ Kεγ−1, ‖Dε,ωũ‖s ≤ Kγ−1. The
convergence is uniform in (ε, ω) ∈ A∞.

Proof. In the proof K, K ′, Ki, denote constants depending on d, F , N0, ω̄1, ω̄2 at most.
First step: initialization. Assume σ > 7/2. If (ε, ω) ∈ N (G, γN−σ0 ) then, by (2), ∀ |(l, j)| ≤ N0,
|ω2l2 − λj | ≥ γ/N3/2

0 , for N0 large so that Nσ−(7/2)
0 > ω̄2. Hence ‖L−1

ω h‖s ≤ N3/2
0 γ−1‖h‖s, ∀h ∈W (N0).

By the contraction mapping theorem, using (P1), for εγ−1 small, there exists a unique solution
u0 := u0(ε, ω) of equation (PN0) satisfying ‖u0‖s ≤ K0εγ

−1. Furthermore, by the implicit function
theorem, (ε, ω) 7→ u0(ε, ω) is in C1(N (G, γN−σ0 ), Hs) and ‖Dε,ωu0‖s ≤ K0γ

−1.
We define ũ0 := ψ0u0 where ψ0 is a C∞ cut-off function defined on A that takes the values 1

on N (G, γN−σ0 /2) and 0 outside N (G, γN−σ0 ), and |Dψ0| ≤ CNσ
0 γ
−1. By the previous estimates,

‖ũ0‖s ≤ Kεγ−1, ‖Dε,ωũ0‖s ≤ Kγ−1, taking εCNσ
0 γ
−1 < 1.

Second step: iteration. Suppose we have already defined ũn ∈ C1(A,W (Nn)) satisfying the properties
stated in the proposition and, in addition, ∀1 ≤ k ≤ n,

‖ũk − ũk−1‖s ≤ Kεγ−1N−σ−1
k , ‖Dε,ωũk −Dε,ωũk−1‖s ≤ Kγ−1N−1

k (14)

Bk ≤ (1 +Nµ
k )Bk−1 , B′k ≤ B′k−1 +Kγ−1Nµ

k (Nσ
kBk + εB′k−1) (15)

where
Bn := 1 + ‖ũn‖s+β , B′n := 1 + ‖Dε,ωũn‖s+β

and
β := 2(σ + 1 + 3µ) , σ = µ+ 3 . (16)

By the first inequality in (15) we get

Bn ≤ B0Πn
i=1(1 +Nµ

i ) ≤ KNµ
n+1 (17)

and so, by the second inequality,
B′n ≤ Kγ−1N2µ+σ

n+1 . (18)

For h ∈W (Nn+1) we write

Lω(ũn + h)− εPNn+1f(ũn + h) =
[
Lωũn − εPNn+1f(ũn)

]
+
[
Lωh− εPNn+1Df(ũn)h

]
+Rn(h)

= rn + LNn+1(ε, ω, ũn)h+Rn(h)

where

rn := Lωũn − εPNn+1f(ũn) and Rn(h) := −εPNn+1(f(ũn + h)− f(ũn)−Df(ũn)h) .

If (ε, ω) ∈ N (An; γN−σn /2) then ũn solves equation (PNn) and so

rn := Lωũn − εPNn+1f(ũn) = −εP⊥NnPNn+1f(ũn) ∈W (Nn)⊥ ∩W (Nn+1) . (19)
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Inversion of LNn+1(ε, ω, ũn). By property (P5), defining

An+1 := An ∩GNn+1(ũn) , (20)

LNn+1(ε, ω, ũn) is invertible for (ε, ω) ∈ N (An+1, γN
−σ
n+1) and∥∥∥L−1

Nn+1
(ε, ω, ũn)h

∥∥∥
s

(12)

≤ K

γ
Nµ
n+1‖h‖s , ∀h ∈W (Nn+1) . (21)

Set
Gn+1 : W (Nn+1) →W (Nn+1) , Gn+1(h) := −L−1

Nn+1
(ε, ω, ũn)(rn +Rn(h))

so that equation (PNn+1) is equivalent to the the fixed point problem h = Gn+1(h).

Lemma 2.1 (Contraction) ∃K1 > 0 such that, for εγ−1 small enough, ∀(ε, ω) ∈ N (An+1, γN
−σ
n+1),

Gn+1 is a contraction in Bn+1 := {h ∈W (Nn+1) | ‖h‖s ≤ ρn+1 := 2K1εγ
−1N−σ−1

n+1 }.

Proof. For N0 large enough (i.e. λ large enough, see (8)) we have N−σn+1 < N−σn /2, ∀n, and so
N (An+1, γN

−σ
n+1) ⊂ N (An; γN−σn /2). Then (19) holds and∥∥∥Gn+1(h)

∥∥∥
s

(21)

≤ K

γ
Nµ
n+1

(
‖rn‖s + ‖Rn(h)‖s

)
(P4),(9)

≤ K ′

γ
Nµ
n+1

(
εN−βn ‖PNn+1f(ũn)‖s+β + ε ‖h‖2s

)
(P2)

≤ ε

γ
K”Nµ

n+1

(
N−βn Bn + ‖h‖2s

)
(17)

≤ ε

γ
K1N

µ
n+1N

−β
n Nµ

n+1 +
ε

γ
K1N

µ
n+1‖h‖2s . (22)

By (22) and the definition of β in (16), if ‖h‖s ≤ ρn+1 := 2K1εγ
−1N−σ−1

n+1 , then∥∥∥Gn+1(h)
∥∥∥
s
≤ ε

γ
K1N

−σ−1
n+1 +

ε

γ
K1N

µ
n+1 ρ

2
n+1 ≤ ρn+1

for εγ−1 small enough.
Next we use the formula

DGn+1(h)[v] = εL−1
Nn+1

(ε, ω, ũn)PNn+1

(
(Df(ũn + h)−Df(ũn))v

)
to obtain

‖DGn+1(h)[v]‖s ≤ K
ε

γ
Nµ
n+1‖h‖s‖v‖s ≤ K

ε

γ
Nµ
n+1ρn+1‖v‖s ≤

‖v‖s
2

(23)

for εγ−1 small enough. Hence Gn+1 is a contraction on Bn+1.

Let hn+1 be the fixed point of Gn+1 defined for all (ε, ω) ∈ N (An+1, γN
−σ
n+1) and un+1 := ũn + hn+1.

Lemma 2.2 (Estimate of the derivatives) The map hn+1 ∈ C1(N (An+1, γN
−σ
n+1);W (Nn+1)) and

‖Dε,ωhn+1‖s ≤ Kγ−1N−1
n+1.

Proof. For all (ε, ω) ∈ N (An+1, γN
−σ
n+1), hn+1(ε, ω) is a solution of Un+1(ε, ω, hn+1(ε, ω)) = 0 where

Un+1(ε, ω, h) := Lω(ũn + h)− εPNn+1f(ũn + h) .

Note that, with the notations of the proof of lemma 2.1, Un+1(ε, ω, h) = LNn+1(ε, ω, ũn)(h − Gn+1(h)).
Since ‖DGn+1(hn+1)‖s ≤ 1/2 (see (23)), DhUn+1(ε, ω, hn+1) = LNn+1(ε, ω, un+1) is invertible and∥∥∥(DhUn+1(ε, ω, hn+1)

)−1∥∥∥
s

=
∥∥∥(I −DGn+1(hn+1))−1L−1

Nn+1
(ε, ω, ũn)

∥∥∥
s
≤ K

γ
Nµ
n+1 . (24)
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Hence, by the Implicit Function Theorem, hn+1 ∈ C1(N (An+1, γN
−σ
n+1),W (Nn+1)) and

Dε,ωhn+1 = −L−1
Nn+1

(ε, ω, un+1)(Dε,ωUn+1)(ε, ω, hn+1) . (25)

Now, using that ũn(ε, ω) solves (PNn) for (ε, ω) ∈ N (An+1, γN
−σ
n+1), we get

DεUn+1(ε, ω, hn+1) = PNnf(ũn)− PNn+1f(un+1) + εPNnDf(ũn)Dεũn − εPNn+1Df(un+1)Dεũn (26)

and
DωUn+1(ε, ω, hn+1) = 2ω(hn+1)tt + εPNnDf(ũn)Dωũn − εPNn+1Df(un+1)Dωũn . (27)

We deduce from (24)-(27) the estimate ‖Dε,ωhn+1‖s ≤ Kγ−1N−1
n+1 using (11), (17), (18), ‖hn+1‖s ≤ ρn+1

in lemma 2.1, and the definition of β in (16); we omit the details.

We now define, by means of a cut-off function, a C1-extension of hn+1 ∈ C1(An+1,W
(Nn)) onto the

whole A. Note that hn+1 is yet defined on a neighborhood of An+1 of width γN−σn+1 and ‖hn+1‖s =
O(εγ−1N−σ−1

n+1 ).

Lemma 2.3 (Whitney extension) There exists an extension h̃n+1 ∈ C1(A,W (Nn+1)) of hn+1 satisfy-
ing, for εγ−1 small, ‖h̃n+1‖s ≤ Kεγ−1N−σ−1

n+1 , ‖Dε,ωh̃n+1‖s ≤ Kγ−1N−1
n+1.

Proof. Let

h̃n+1(ε, ω) :=
{
ψn+1(ε, ω)hn+1(ε, ω) if (ε, ω) ∈ N (An+1, γN

−σ
n+1)

0 if (ε, ω) /∈ N (An+1, γN
−σ
n+1)

(28)

where ψn+1 is a C∞ cut-off function satisfying 0 ≤ ψn+1 ≤ 1, ψn+1 ≡ 1 on N (An+1, γN
−σ
n+1/2), ψn+1 ≡ 0

outside N (An+1, γN
−σ
n+1), and |Dε,ωψn+1| ≤ γ−1Nσ

n+1C (a cut-off function ψn+1 can be constructed like
in lemma 3.3 of [3]).

Then ‖h̃n+1‖s ≤ ‖hn+1‖s ≤ Kεγ−1N−σ−1
n+1 by lemma 2.1, and, for εγ−1 ≤ 1,

‖Dε,ωh̃n+1‖s ≤ |Dε,ωψn+1| ‖hn+1‖s + ‖Dε,ωhn+1‖s ≤ K̄γ−1N−1
n+1

thanks to the estimate ‖Dε,ωhn+1‖s ≤ Kγ−1N−1
n+1 proved in lemma 2.2.

Finally we define the C1-Whitney extension ũn+1 ∈ C1(A,W (Nn+1)) of un+1 as

ũn+1 := ũn + h̃n+1 .

To complete the induction proof of Theorem 2.1 we have to prove that ũn+1 and An+1 satisfy all the
properties stated in the Theorem plus (14)-(15) at the step n+ 1.

By lemma 2.3 property (14) is verified at the step n + 1. Then we get also ‖ũn+1‖s ≤ Kεγ−1 and
‖Dε,ωũn+1‖s ≤ Kγ−1.

Now we prove that also (15) holds at the step n+ 1.

Lemma 2.4 For ε ≤ ε0(γ,N0, β) small enough,

Bn+1 ≤ (1 +Nµ
n+1)Bn and B′n+1 ≤ B′n +Kγ−1Nµ

n+1(Nσ
n+1Bn + εB′n) .

Proof. We have Bn+1 ≤ Bn + ‖h̃n+1‖s+β where, by (28), ‖h̃n+1‖s+β ≤ ‖hn+1‖s+β and, for all
(ε, ω) ∈ N (An+1, γN

−σ
n+1), hn+1 = −L−1

Nn+1
(ε, ω, ũn)(rn +Rn(hn+1)). Then

‖hn+1‖s+β
(P5)

≤ K
Nµ
n+1

γ

(
‖rn‖s+β + ‖Rn(hn+1)‖s+β + ‖ũn‖s+β(‖rn‖s + ‖Rn(hn+1)‖s)

)
. (29)

By (19) and the tame estimate (P2),

‖rn‖s+β ≤ ε‖f(ũn)‖s+β
(P2)

≤ εK(1 + ‖ũn‖s+β) = εKBn . (30)
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By the Taylor tame estimate (P3), and since ‖hn+1‖s ≤ ρn+1 = 2K1εγ
−1N−σ−1

n+1 (lemma 2.1)

‖Rn(hn+1)‖s+β
(P3)

≤ εK
(
‖ũn‖s+β‖hn+1‖2s + ‖hn+1‖s‖hn+1‖s+β

)
≤ εK

(
Bnρ

2
n+1 + ρn+1‖hn+1‖s+β

)
.

(31)
Inserting in (29) estimates (30)-(31), ‖rn‖s, ‖Rn(hn+1)‖s ≤ Kε, we get

‖hn+1‖s+β ≤ K̄
ε

γ
Nµ
n+1Bn +

(
K̄
ε

γ
Nµ−σ−1
n+1

)
‖hn+1‖s+β ≤ K̄

ε

γ
Nµ
n+1Bn +

1
2
‖hn+1‖s+β

for K̄εγ−1 < 1/2. Hence ‖hn+1‖s+β ≤ Nµ
n+1Bn. The second inequality follows similarly by (25)-(27) and

using ‖Dε,ωh̃n+1‖s+β ≤ Cγ−1Nσ
n+1‖hn+1‖s+β + ‖Dε,ωhn+1‖s+β .

Lemma 2.5 (Measure estimate) A∞ :=
⋂∞
n=0 satisfies |A∞| ≥ ε0(ω̄2 − ω̄1)− Cε0γ.

Proof. Recalling (20), the complementary Ac∞ =
⋃∞
n=0G

c
Nn+1

(ũn) and, by (P5), GcNn+1
(ũn) = Gc for

all n such thatNn+1 ≤ c(γε−1
0 )2/3, that is all n = 0, 1 . . . , n∗ for some n∗, so thatAn∗+1 =An∗ = . . . = A0.

By standard arguments, |Gc| ≤ Cε0γ. Since ‖ũn − ũn−1‖ ≤ N−σn , ∀n, by (13),∣∣∣ ∞⋃
n=0

GcNn+1
(ũn)

∣∣∣ =
∞∑

n>n∗

∣∣∣GcNn+1
(ũn) \GcNn(ũn−1)

∣∣∣+ |Gc|

≤
∑
n>n∗

ε0γN
−1
n + |Gc| ≤ C ′ε0γ

and we get the thesis.

Finally, by (14), we deduce that, ∀(ε, ω) ∈ A∞, the series

ũ := ũ0 +
∞∑
n=1

(ũn − ũn−1)

converges in Hs (uniformly in (ε, ω)) to a solution of equation (3) and ‖ũ‖s ≤ Kεγ−1, ‖Dε,ωũ‖s ≤ Kγ−1.
The proof of Theorem 2.1 is complete.

3 The linearized problem: proof of (P5)

3.1 Preliminaries

For A ⊂ Zd+1, A finite and symmetric (i.e. −A = A), we define the finite dimensional subspace of Hs

HA := Spank∈A{ek} =
{∑
k∈A

hkek : hk ∈ C , h∗k = h−k

}
where ek(t, x) := ei(lt+j·x)

and k := (l, j) ∈ Z× Zd. We shall denote by PA the L2-orthogonal projector on HA, defined by

PAh :=
∑
k∈A

hkek , ∀h =
∑

k∈Zd+1

hkek ∈ Hs .

Note that PA is also the Hs-orthogonal projector onto HA. With these notations, the linear operator LN
in (10) is defined on HΩN , where

ΩN :=
{
k := (l, j) ∈ Z× Zd

∣∣∣ |(l, j)| ≤ N}
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and we write5

LN = D + εT with Dh := ω2htt −∆h+mh , Th := PΩN (a h) , a(t, x) := −(∂uF )(t, x, u(t, x)) .

Note that T , as u, depends on the parameters ε and ω. In the L2- orthonormal basis (ek)k∈ΩN of HΩN ,
D is represented by a diagonal matrix with eigenvalues

dk = d(l,j) := −ω2l2 + λj , λj := |j2|+m,

whereas T is represented by the self-adjoint Toepliz matrix (ak−k′)k,k′∈ΩN , the ak being the Fourier
coefficients of the function a(t, x).

Definition 3.1 Given U ∈ L(HΩN , HΩN ) and A,B ⊂ ΩN , we define the linear operator

UAB : HA → HB , UAB := PBU |HA

and its operatorial norm ‖UAB ‖s := sup{‖UABh‖s, h ∈ HA, ‖h‖s = 1}. We set

LAB := PBLN |HA = PB(D + εT )|HA = DA
B + εTAB .

Note that LBA is the L2-adjoint of LAB and, in particular, LAA is L2-selfadjoint.

Lemma 3.1 Let U ∈ L(HA, HA) be L2-selfadjoint.
i) Its eigenvalues λk satisfy mink |λk| ≥ λ̄ > 0 if and only if ‖U−1‖0 ≤ λ̄−1.

ii) If true then, ∀s′ ≥ 0, ‖U−1‖s′ ≤ λ̄−1
(MA

mA

)s′
where MA := max

k∈A
|k| , mA := min

k∈A
|k| .

Proof. i) is standard. For ii), by the smoothing estimates (P4) and lemma 3.1 we get

‖U−1h‖s′ ≤Ms′

A ‖U−1h‖0 ≤
Ms′

A

λ̄
‖h‖0 ≤

Ms′

A

ms′
A

1
λ̄
‖h‖s′ .

A bounded subset A of Zd+1 is said dyadic if MA ≤ 2mA where MA := maxk∈A |k|, mA := mink∈A |k|.
By lemma 3.1, the inverse of the minimum modulus of the eigenvalues of a self-adjoint operator U , acting
on a subspace HA with dyadic A, provides also a bound of the Sobolev operatorial norm ‖U−1‖s′ .

In the next lemma we estimate the variations of the eigenvalues of LAA(ε, ω) with respect to ω.

Lemma 3.2 Let A ⊂ ΩN , 0 < ω̄1 < ω̄2 and I be any compact interval in [−γ, γ], of length |I|. Suppose
‖u‖C1(s) ≤ Cγ−1. There exists ε0(γ) > 0 such that, for all 0 < ε ≤ ε0(γ),∣∣∣{ω ∈ [ω̄1, ω̄2] s.t. at least one eigenvalue of LAA(ε, ω) belongs to I}

∣∣∣ ≤ |A| |I|
ω̄1

(32)

where |A| denotes the number of elements of A.

Proof. Since the map ω 7→ LAA(ε, ω) is C1 and each LAA(ε, ω) is selfadjoint, its eigenvalues can be listed
as C1 functions λk(ε, ω), 1 ≤ k ≤ |A|, of ω. In what follows, 0 < ε ≤ ε0(γ) is fixed and we omit the
dependency with respect to ε.

Denoting Eω,k the eigenspace of LAA(ω) associated to λk(ω),

(∂ωλk)(ω) ≤ max
h∈Eω,k,‖h‖0=1

(
(∂ωLAA)(ω)h, h

)
0

= max
h∈Eω,k,‖h‖0=1

(
2ω(∂tth, h)0 +O(εγ−1)

)
≤ max

h∈Eω,k,‖h‖0=1

(
− 2ω‖∂th‖20 +O(εγ−1)

)
(33)

5Comparing with the notations of section 2, HΩN ≡W
(N), D ≡ Lω and PΩN ≡ PN .
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using that ‖∂ωa‖s = ‖(∂2
uF )(t, x, u) ∂ωu‖s ≤ Cγ−1 and integrating by parts.

Let P1 denote the L2-orthogonal projector on H1,A := {h ∈ HA | ∂th = 0}.
Claim: Let λk(ω) ∈ [−γ, γ]. For h ∈ Eω,k, decompose h = h1+h2 with h1 := P1h, h2 := (I−P1)h ∈ H⊥1,A.
Then, for ε0 small enough, ‖h2‖20 ≥ 3‖h‖20/4.
Indeed, if h ∈ Eω,k, ω2htt −∆h+mh+ εPA(ah) = λk(ω)h and so h1 satisfies

−∆h1 +mh1 − λk(ω)h1 = −εP1PA(ah) . (34)

Furthermore, by (2), ‖j|2 +m| ≥ 3γ, ∀j ∈ Zd, and if λk(ω) ∈ [−γ, γ] then ‖j|2 +m−λk(ω)| ≥ 2γ. Hence
−∆ +m−λk(ε, ω) is a L2-selfadjoint operator of HA whose eigenvalues are of modulus ≥ 2γ. From (34),

‖h1‖0 ≤
ε

2γ
‖P1PA(ah)‖0 ≤

Cε

γ
‖a‖s‖h‖0 ≤

‖h‖0
2

for εγ−1 small enough, and the claim follows.
Finally, since ‖∂th‖20 = ‖∂th2‖20 ≥ ‖h2‖20, we deduce, from (33) and the previous claim,

(∂ωλk)(ω) ≤ max
h∈Eω,k,‖h‖0=1

(
− 2ω‖h2‖20 +O(εγ−1)

)
≤ −3ω

2
+O(εγ−1) ≤ −ω ≤ −ω̄1

for 0 < ε ≤ ε0(γ) small enough. Therefore, |λ−1
k (I) ∩ (ω̄1, ω̄2)| ≤ |I|/ω̄1 and, summing over all the |A|

eigenvalues, we deduce (32).

3.2 Regular and Singular sites

Definition 3.2 Fixed ρ > 0 we define the regular sites R and the singular sites S, as

R :=
{
k ∈ ΩN | |dk| ≥ ρ

}
and S := ΩN\R :=

{
k ∈ ΩN | |dk| < ρ

}
.

We introduce the following assumption: the singular sites S can be partitioned in disjoint clusters Ωα,

S =
⋃
α∈A

Ωα (35)

satisfying:

• (H1) (dyadic) Mα ≤ 2mα, ∀α ∈ A, where Mα := maxk∈Ωα |k|, mα := mink∈Ωα |k|.

• (H2) (separation) ∃δ := δ(d) ∈ (0, 1) such that d(Ωα,Ωσ) := mink∈Ωα,k′∈Ωσ |k−k′| ≥ (Mα+Mσ)δ/
2, ∀α 6= σ.

For the wave equation (3), we shall verify both properties (H1)-(H2) in lemma 3.6 and section 4.

Remark 3.1 Condition (H1) is weaker than the corresponding one in [7] (Lemma 7 of Appendix 2). It
could be considerably weakened, but not completely eliminated, see remark 3.2.

For K ≤ N let
ΩK :=

{
k ∈ Zd+1 | |k| ≤ K

}
and LK := LΩK

ΩK
. (36)

Proposition 3.1 Assume that there is a partition of S satisfying (H1)-(H2). Given τ > 0, there exist
µ := µ(d, τ), s := s(δ, d, τ) (independent of N) and, ∀γ ∈ (0, 1), ∀s′ ≥ s, there is ε0 := ε0(γ, s′) > 0 such
that : if < ε ≤ ε0 and ∀K ≤ N , all the eigenvalues of LK have modulus ≥ γK−τ then

‖L−1
N h‖s′ ≤

K(s′)
γ

Nµ
(
‖h‖s′ + ‖u‖s′‖h‖s

)
, ∀h ∈ HΩN . (37)
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Remark 3.2 Without exploiting any separation property of the clusters we would only have an estimate
like ∀N , ‖L−1

N h‖s′ ≤ Ns′‖h‖s′ , ∀h ∈ HΩN . This is even weaker than a tame like estimate like ‖L−1
N h‖s′ ≤

K‖h‖2s′ . In [19] Lojasiewicz and Zehnder have shown with a counter-example that a so weak condition
is not enough for the convergence of the Nash-Moser iteration scheme, whereas a tame estimate like
‖L−1

N h‖s′ ≤ K‖h‖λs′ with λ < 2 would be enough. This fact confirms that some more information, in
addition to lower bounds for the moduli of the eigenvalues, is required.

We shall deduce property (P5) from Proposition 3.1 in the next section. The proof of Proposition 3.1
is provided in sections 3.4, 3.5, 3.6.

3.3 Proof of (P5)

Let

BK(u) :=
{

(ε, ω) ∈ [0, ε0]× [ω̄1, ω̄2] | ‖L−1
K ‖0 ≤

Kτ

2γ

}
and GN (u) :=

⋂
K≤N

BK(u) ∩G .

By lemma 3.1, (ε, ω) ∈ BK(u) if and only if all the eigenvalues λk, k = 1, . . . ,K, of LK have modulus
greater or equal to 2γ/Kτ . Below, to emphasize the dependence of LK with respect to parameters, we
shall use the notations LK(ε, ω).

Lemma 3.3 Let τ ≥ 3/2. There is c > 0 such that ∀K ≤ Nε0 := c(γε−1
0 )2/3 we have G ⊂ BK(u). As a

consequence, if N ≤ Nε0 then GN (u) = G.

Proof. The eigenvalues of LK have the form −ω2l2 + |j|2 + m + O(ε) with |(l, j)| ≤ K. Hence,
∀(ε, ω) ∈ G, as a consequence of (2), if ε0γ

−1K3/2 is small enough, then all the eigenvalues of LK(ε, ω)
have modulus ≥ 2γ/K3/2.

On the other hand, for N > Nε0 := c(γε−1
0 )2/3, we have to excise additional “resonant parameters”.

Lemma 3.4 Let N > Nε0 . If (ε, ω) ∈ N (GN (u), γN−3−τ ) then, ∀K ≤ N , all the eigenvalues of LK(ε, ω)
have modulus ≥ γK−τ .

Proof. For ω, ω′ ∈ [ω̄1, ω̄2] and ε, ε′ ∈ [0, ε0], we have, ∀h ∈ HΩK ,∥∥∥(LK(ε, ω)− LK(ε′, ω′))h
∥∥∥

0
≤ |ω2 − ω′2|‖htt‖0 + ε′‖a(ε, ω)− a(ε′, ω′)‖s‖h‖0 + |ε− ε′|‖a(ε, ω)‖s‖h‖0

≤ CK2(|ω − ω′|+ |ε− ε′|)‖h‖0 .

If (ε, ω) ∈ N (GN (u), γN−3−τ ), there is (ε′, ω′) ∈ GN (u) such that |ω − ω′| + |ε − ε′| ≤ γN−3−τ and
∀K ≤ N , ∀h ∈ HΩK ,

‖LK(ε, ω)h‖0 ≥ ‖LK(ε′, ω′)h‖0 − C
γK2

N3+τ
‖h‖0 ≥

( 2γ
Kτ
− C γK2

N3+τ

)
‖h‖0 ≥

γ

Kτ
‖h‖0 ,

by the definition of BK(u). The result follows.

Lemma 3.5 Let σ, τ ≥ d+ 3. Then the measure estimate (13) holds.

Proof. For N ′ ≥ N ,

GcN ′(u2)\GcN (u1) = GcN ′(u2) ∩GN (u1) ⊂
[
∪K≤N (BcK(u2) ∩BK(u1) ∩G)

]
∪
[
∪K>N BcK(u2) ∩G

]
.

By lemma 3.3, if K ≤ Nε0 then BcK(u2) ∩ G = ∅. Hence, to show (13), it is enough to prove that, if
‖u1 − u2‖s ≤ N−σ, then∑

K≤N

|BcK(u2) ∩BK(u1)|+
∑

K>max(N,Nε0 )

|BcK(u2)| ≤ C̄ γε0

N
.
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Since ‖LK(u2) − LK(u1)‖0 = O(ε‖u2 − u1‖s) = O(εN−σ), if one of the eigenvalues of LK(u2) is in
[−2γK−τ , 2γK−τ ] then, by the variational characterization of the eigenvalues of a selfadjoint operator,
one of the eigenvalues of LK(u1) is in [−2γK−τ − CεN−σ, 2γK−τ + CεN−σ]. As a result

BcK(u2) ∩BK(u1) ⊂ {(ε, ω) | ∃ at least one eigenvalue of LK(u1)
with modulus in [2γK−τ , 2γK−τ + CεN−σ]} .

Then, by lemma 3.2, |{ω|(ε, ω) ∈ BcK(u2) ∩BK(u1)}| ≤ CεN−σ|ΩK |/ω̄1 for each ε ∈ (0, ε0], whence

|BcK(u2) ∩BK(u1)| ≤ C ′ε2
0|ΩK |N−σ ≤ C ′ε2

0K
d+1N−σ .

Moreover, still by lemma 3.2, |BcK(u2)| ≤ Cε0|ΩK |γK−τ/ω̄1 ≤ C ′ε0γK
d+1−τ . Hence, for σ, τ ≥ d+ 3,∑

K≤N

|BcK(u2) ∩BK(u1)|+
∑

K>max(N,Nε0 )

|BcK(u2)|

≤ Cε2
0

( ∑
K≤N

Kd+1
)
N−σ + Cε0γ

( ∑
K>max(N,Nε0 )

Kd+1−τ
)

≤ Cε2
0N

d+2−σ + C ′ε0γ(max(N,Nε0))d+2−τ ≤ C̄γε0N
−1,

provided that ε0 is small enough.

Lemma 3.6 (Separation in clusters) ∀ γ ∈ (0, 1) let ρ(γ) := γ3r(d)+1/8 as defined in lemma 4.4.
There is ε0(γ) such that ∀N ≥ Nε0 := c(γε−1

0 )2/3, ∀ (ε, ω) ∈ N (G, γN−σ), σ ≥ 3, there exists a decom-
position of the singular sites

S :=
{

(l, j) ∈ ΩN | |ω2l2 − λj | < ρ :=
ρ(γ)

2

}
=
⋃
α∈A

Ωα (38)

in clusters, satisfying both properties (H1)-(H2) for some δ := δ(d).

Proof. Let (ε, ω′) ∈ G. By lemma 4.4, ∀γ ∈ (0, 1),

S′ :=
{

(l, j) ∈ ΩN | |(ω′)2l2 − λj | < ρ(γ)
}

=
⋃
α∈A

Ω′α

satisfying (H1)-(H2) for some δ := δ(d). If ε0(γ) is small enough, then ∀N ≥ Nε0 , γN−σ ≤ ρ(γ)N−2/4ω̄2,
and, ∀|ω−ω′| ≤ γN−σ, we have S ⊂ S′. Therefore S =

⋃
α∈A Ωα where Ωα := Ω′α ∩S satisfy (H1)-(H2).

Proof of Property (P5) completed. Let (ε, ω) ∈ N (GN , γN−σ) with σ ≥ 3 + τ . Then, by
lemma 3.6, there exists a partition of the singular sites S satisfying assumptions (H1)-(H2). Furthermore,
by lemma 3.4, ∀K ≤ N , all the eigenvalues of LK have modulus ≥ γK−τ . Therefore, by Proposition 3.1,
LN (ε, ω, u) is invertible and (11) holds (we can fix τ = d+ 3 by lemma 3.5).

The measure estimate (13) is proved in lemma 3.5.

The remainder of this section is devoted to the proof of Proposition 3.1.

3.4 Reduction along the regular sites

We have to solve the linear system

LNh = b , h, b ∈ HΩN . (39)

According to the splitting of the indexes ΩN = R ∪ S we decompose

HΩN = HR ⊕HS
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in orthogonal subspaces. Writing the unique decomposition h = hR+hS , b = bR+ bS , with hR, bR ∈ HR,
hS , bS ∈ HS , problem (39) is equivalent to{

LRRhR + LSRhS = bR
LRShR + LSShS = bS .

(40)

We recall that s > (d+ 1)/2 so that Hs is a Banach algebra.
To prove the invertibility of LRR = DR + εTR where, for brevity, DR := DR

R, TR := TRR , note that

∀s ≥ 0 , ‖DRh‖s ≥ (min
k∈R
|dk|)‖h‖s ≥ ρ‖h‖s , ∀h ∈ HR . (41)

Lemma 3.7 There is c > 0 such that if ε‖a‖s/ρ ≤ c then ‖(LRR)−1‖0, ‖(LRR)−1‖s ≤ 2ρ−1.

Proof. We have, ∀h ∈ HR,

‖LRRh‖s ≥ ‖DRh‖s − ε‖TRh‖s ≥ (ρ− εC‖a‖s)‖h‖s

and the result follows. Similarly for ‖(LRR)−1‖0.

Next we estimate the Sobolev norm ‖(LRR)−1h‖s′ for s′ ≥ s. Since T comes from the multiplication
operator for the function a ∈ Hs, it is natural to expect the following interpolation type inequality.

Lemma 3.8 For ε(‖a‖s + 1)/ρ ≤ c(s′) small enough, ‖(LRR)−1h‖s′ ≤ 2ρ−1(‖a‖s′ ‖h‖s + ‖h‖s′).

Proof For h ∈ HR let v := (LRR)−1h. Then

‖h‖s′ = ‖DRv + εTRv‖s′ ≥ ‖DRv‖s′ − ε‖TRv‖s′
(41)

≥ ρ‖v‖s′ − ε‖TRv‖s′ .

Now ‖TRh‖s′ ≤ C(s′)(‖a‖s′‖h‖s + ‖a‖s‖h‖s′), ∀h ∈ HR, (see e.g. [24]), hence

‖h‖s′ ≥ (ρ− εC(s′)‖a‖s)‖v‖s′ − εC(s′)‖a‖s′‖v‖s .

Therefore, if εC(s′)(‖a‖s + 1)ρ−1 ≤ 1/2,

‖v‖s′ ≤
2
ρ

(
‖h‖s′ + εC(s′)‖a‖s′‖v‖s

)
≤ 2
ρ

(
‖h‖s′ + ‖a‖s′‖h‖s

)
,

by Lemma 3.7.

Lemma 3.9 ∀A,B ⊂ ΩN , ∀s′ ≥ s, ‖TAB ‖0 ≤
C(s′)‖a‖s′

(1 + d(A,B))s′−(d+1)/2
.

Proof Using Hölder inequality and exchanging the order of integration

‖TAB h‖20 =
∑
k∈B

∣∣∣ ∑
m∈A

ak−mhm

∣∣∣2 ≤∑
k∈B

( ∑
m∈A

|ak−m|2 |hm|2(1 + |k −m|2s
′
)
)( ∑

m∈A

1
1 + |k −m|2s′

)
≤

∑
m∈A

|hm|2
(∑
k∈B

|ak−m|2 (1 + |k −m|2s
′
)
) ∑
|m|≥∆

1
1 + |m|2s′

≤ C(s′)‖h‖20 ‖a‖2s′
(1 + ∆)2s′−(d+1)

where ∆ := d(A,B).

Lemma 3.10 Let U ∈ L(HR, HR) be such that, for some κ > 0, ∀A,B ⊂ R,

‖UAB ‖0 ≤
C1

(1 + d(A,B))κ
.

Then, ∀p ≥ 1, ∀A,B ⊂ R, ∥∥∥(Up)AB
∥∥∥

0
≤ C1p

κ+1‖U‖p−1
0

(1 + d(A,B))κ
. (42)
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Proof We proceed by induction noting that, for p = 1, (42) is just our assumption. Now assume
that (42) holds up to order p. Define ∆ := d(A,B) and, for some λ ∈ (0, 1) to be specified later,
B′ = N (B, λ∆) ∩R, B′′ = R\B′. We have∥∥∥(Up+1)AB

∥∥∥
0

=
∥∥∥(Up)B

′

B UAB′ + (Up)B
′′

B UAB′′
∥∥∥

0
≤ ‖Up‖0‖UAB′‖0 + ‖(Up)B

′′

B ‖0‖U‖0

≤ ‖U‖p0
C1

(1 + d(A,B′))κ
+

C1p
κ+1‖U‖p−1

0

(1 + d(B′′, B))κ
‖U‖0

by our hypothesis of induction. Now d(A,B′) ≥ (1− λ)∆ and d(B′′, B) ≥ λ∆. Hence∥∥∥(Up+1)AB
∥∥∥

0
≤ C1‖U‖p0

( 1
(1 + (1− λ)∆)κ

+
pκ+1

(1 + λ∆)κ
)
≤ C1‖U‖p0

(1 + ∆)κ
( 1

(1− λ)κ
+
pκ+1

λκ

)
.

Since minλ∈(0,1)[(1− λ)−κ + pκ+1λ−κ] = (p+ 1)κ+1 we have proved (42) up to order p+ 1.

Lemma 3.11 ∀A,B ⊂ R with A ∩B = ∅, and for ε‖a‖sρ−1 ≤ c small enough,∥∥∥[(LRR)−1]AB
∥∥∥

0
≤ εC(s′)‖a‖s′
ρ2 d(A,B)s′−(d+1)/2

.

Proof By the Newmann series expansion

(LRR)−1 := (DR + εTR)−1 =
(
I +

∑
p≥1

(−1)p(εD−1
R TR)p

)
D−1
R (43)

and since A∩B = ∅, [(LRR)−1]AB =
∑
p≥1(−1)pεp(Up)AB [D−1

R ]AA where U := D−1
R TR. Since ‖D−1

R ‖0 ≤ ρ−1,∥∥∥[(LRR)−1]AB
∥∥∥

0
≤ 1
ρ

∑
p≥1

εp‖(Up)AB‖0 . (44)

Now, by lemma 3.9, ∀A,B ⊂ R,

‖UAB ‖0 = ‖[D−1
R ]BBT

A
B ‖0 ≤

1
ρ
‖TAB ‖0 ≤

C(s′)‖a‖s′
ρ(1 + d(A,B))κ

with κ := s′ − (d+ 1)/2, whence, by lemma 3.10,

‖(Up)AB‖0 ≤
C(s′)‖a‖s′pκ+1‖U‖p−1

0

ρ(1 + d(A,B))κ
≤ C(s′)‖a‖s′pκ+1‖a‖p−1

s

ρpd(A,B)κ

using that ‖U‖0 = ‖D−1
R TR‖0 ≤ ρ−1‖a‖s. By (44) we get∥∥∥[(LRR)−1]AB

∥∥∥
0
≤ εC(s′)‖a‖s′
ρ2 d(A,B)κ

(∑
p≥1

[ε‖a‖s
ρ

]p−1

pκ+1
)

proving the lemma.

Solving the first equation in (40) gives

hR = (LRR)−1(bR − LSRhS) (45)

and inserting into the second equation in (40) gives[
LSS − LRS (LRR)−1LSR

]
hS = bS − LRS (LRR)−1bR . (46)
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Our main task is to invert the selfadjoint operator

U : HS → HS , U := LSS − LRS (LRR)−1LSR . (47)

According to (35) we get the orthogonal decomposition HS = ⊕α∈AHΩα which induces a block decom-
position for the operator

U : ⊕α∈AHΩα → ⊕α∈AHΩα , U =
(
UΩα

Ωσ

)
α,σ∈A

, UΩα
Ωσ

= LΩα
Ωσ
− LRΩσ (LRR)−1LΩα

R

where α is the column index and σ is the row index. We write

U = D +R with D := diagα∈A(UΩα
Ωα

) and R := (UΩα
Ωσ

)α6=σ .

3.5 Estimates of the blocks

We always assume in the sequel that ε‖a‖s/ρ < c. We first estimate the off-diagonal blocks UΩα
Ωσ

, α 6= σ.

Lemma 3.12 ∀s′ ≥ s, ∀α 6= σ

‖UΩα
Ωσ
‖0 ≤

εC(s′)‖a‖s′
d(Ωα,Ωσ)s′−

d+1
2

. (48)

Proof. The term LΩα
Ωσ

= εTΩσ
Ωα

satisfies estimate (48) by lemma 3.9. To estimate the term LRΩσ (LRR)−1LΩα
R

we decompose R = R1 ∪R2 ∪R3 where

R1 :=
{
k ∈ R | d(Ωα, k) <

d(Ωα,Ωσ)
3

}
, R3 :=

{
k ∈ R | d(Ωσ, k) <

d(Ωα,Ωσ)
3

}
, R2 := R \ (R1 ∪R3) .

Accordingly we have the decomposition HR = HR1 ⊕HR2 ⊕HR3 and so

LRΩσ (LRR)−1LΩα
R =

3∑
i=1

3∑
j=1

LRiΩσ

[
(LRR)−1

]Rj
Ri
LΩα
Rj
.

To bound each term in the sum above, we distinguish three cases.
First case: j ≥ 2. In this case d(Rj ,Ωα) ≥ d(Ωα,Ωσ)/3. Then, since LΩα

Rj
= εTΩα

Rj
, by lemma 3.9,

‖LΩα
Rj
‖0 ≤

εC(s′)‖a‖s′
d(Ωα,Ωσ)s′−

d+1
2

.

Using also ‖LRiΩσ
‖0 = ε‖TRiΩσ

‖0 ≤ ε‖a‖s and lemma 3.7, we get∥∥∥LRiΩσ

[
(LRR)−1

]Rj
Ri
LΩα
Rj

∥∥∥
0
≤ 2ε‖a‖s

ρ

εC(s′)‖a‖s′
d(Ωα,Ωσ)s′−

d+1
2

≤ εC(s′)‖a‖s′
d(Ωα,Ωσ)s′−

d+1
2

Second case: j = 1, i = 1, 2. Now d(Ri,Ωσ) ≥ d(Ωα,Ωσ)/3, and we proceed as in the previous case
(the small factor is ‖LRiΩσ

‖0).
Third case: j = 1, i = 3. Now d(R1, R3) ≥ d(Ωα,Ωσ)/3, and, by lemma 3.11,∥∥∥[(LRR)−1

]R1

R3

∥∥∥
0
≤ εC(s′)‖a‖s′
ρ2 d(Ωα,Ωσ)s′−

d+1
2

.

Using also ‖LRiΩσ
‖0, ‖LRiΩσ

‖0 ≤ ε‖a‖s, we get estimate (48).

In the sequel we assume

s ≥ s(d, τ) :=
d+ 1

2
+
d+ 1 + τ

δ
+ 1 , (49)

where δ > 0 is defined in (H2) and τ > 0 is the parameter introduced in Proposition 3.1.
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Lemma 3.13 Under the assumptions of Proposition 3.1, ∀ 0 < ε ≤ ε0(γ) small enough, UΩα
Ωα

is invertible
and ‖(UΩα

Ωα
)−1‖0 ≤ cγ−1Mτ

α with c := 2τ+2.

Proof It is sufficient to prove that

‖UΩα
Ωα
w‖0 ≥

γ

cMτ
α

‖w‖0 , ∀w ∈ HΩα . (50)

For all w ∈ HΩα ⊂ HS , we have, recalling (47),

UΩα
Ωα
w +

∑
σ 6=α

UΩα
Ωσ
w = Uw = (LSR + LSS)w − (LRR + LRS )(LRR)−1LSRw = LNh (51)

where h := w − (LRR)−1LSRw.
Step 1:

∑
σ 6=α ‖U

Ωα
Ωσ
w‖0 ≤ ε‖a‖sC(s)Md+1−ν

α ‖w‖0 where ν := δ(s− (d+ 1)/2) > 0.
Indeed, by lemma 3.12 (with s′ = s)∑

σ 6=α

‖UΩα
Ωσ
w‖0 ≤

∑
σ 6=α

Cε‖a‖s‖w‖0
d(Ωα,Ωσ)s−

d+1
2

(H2)

≤ Cε‖a‖s‖w‖0
∑
σ 6=α

1
(Mα +Mσ)ν

. (52)

Next, for each x ∈ Ωσ ⊂ S, we define M(x) := Mσ and N(x) := |Ωσ|. Then∑
σ 6=α

1
(Mα +Mσ)ν

=
∑

x∈S\Ωα

1
N(x)(Mα +M(x))ν

≤
∑

x∈Zd+1,|x|≤N

1
(Mα + |x|)ν

because N(x) ≥ 1 and M(x) ≥ |x|. Hence, for ν > d+ 1,∑
σ 6=α

1
(Mα +Mσ)ν

≤ C
∫ +∞

1

rddr

(Mα + r)ν
≤ C(ν)

(1 +Mα)ν−d−1

proving, by (52), Step 1.
Step 2: ‖LNh‖0 ≥ 2−τ−1γM−τα ‖w‖0.
Decompose h = h′ + h′′ with h′ := PΩKh, h′′ := PΩc

K
h and K := 2Mα (recall the notation in (36)). We

have
‖LNh‖0 ≥ ‖PΩKLNh‖0 ≥ ‖LKh′‖0 − ε‖T

ΩcK
ΩK

h′′‖0 ≥
γ

(2Mα)τ
‖h′‖0 − εC‖a‖s‖h′′‖0, (53)

by the assumptions on the eigenvalues of LK in Proposition 3.1. Moreover since h = w − (LRR)−1LSRw
and w ∈ HΩα ⊂ HΩK ,

h′′ = −PΩc
K

(LRR)−1LSRw = −[(LRR)−1]RR∩Ωc
K
LΩα
R w.

Now d(Ωα, R ∩ ΩcK) ≥Mα, from which we derive, arguing as in the proof of lemma 3.12, that

‖h′′‖0 ≤
Cε‖a‖s

ρM
s−(d+1)/2
α

‖w‖0 . (54)

Furthermore, since w ∈ HΩα and h′ − w = −PΩ2Mα
(LRR)−1LSRw ∈ HR, we have ‖h′‖0 = (‖h′ − w‖20 +

‖w‖20)1/2 ≥ ‖w‖0 and, (53), (54), imply

‖LNh‖0 ≥
γ‖w‖0
(2Mα)τ

− Cε2‖a‖2s
ρM

s−(d+1)/2
α

‖w‖0 ≥
γ‖w‖0
(2Mα)τ

(
1− C ′ε2‖a‖2s

γρM
s−τ−(d+1)/2
α

)
≥ 2−τ−1 γ

Mτ
α

‖w‖0

because s > τ + (d+ 1)/2, and provided that εγ−1 is small enough.
Noting that ν > d + 1 − τ (because s ≥ s(d, τ)), we deduce (50) from (51), Step 1 and Step 2, for

ε0(γ) small enough.
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3.6 Inversion of U and proof of Proposition 3.1

By lemma 3.13 the operator D := diagα∈A(UΩα
Ωα

) is invertible, and we write

U = D +R = D(I +D−1R) .

For the presence of the “small divisors”, D−1 acts as an unbounded operator.

Lemma 3.14 ∀s′ ≥ 0, ‖D−1h‖s′ ≤ K(s′)γ−1Nτ‖h‖s′ , ∀h ∈ HΩN .

Proof. For h =
∑
α∈A hα, hα ∈ HΩα ,

‖D−1h‖2s′ =
∑
α∈A
‖(UΩα

Ωα
)−1hα‖2s′

(P4)

≤
∑
α

M2s′

α ‖(U
Ωα
Ωα

)−1hα‖20 ≤
∑
α

M2s′

α

cM2τ
α

γ2
‖hα‖20

by lemma 3.13. Then

‖D−1h‖2s′
(P4)

≤
∑
α∈A

cM2τ
α

γ2
M2s′

α

‖hα‖2s′
m2s′
α

(H1)

≤ c22s′

γ2

∑
α∈A

M2τ
α ‖hα‖2s′ ≤

C(s′)
γ2

N2τ‖h‖2s′

because Mα ≤ N .

By lemma 3.12 the operator R acts somehow as a multiplication operator. Nevertheless, using the
separation property (H2) we prove that D−1R is L2-bounded and, using also the dyadic property (H1),
we prove an interpolation type estimate for D−1R in high Sobolev norm.

Lemma 3.15 Assume (49). Then

‖D−1Rh‖0 ≤ K
ε

γ
‖a‖s‖h‖0 , (55)

and, ∀s′ ≥ s(d, τ), setting µ0 := τ + 3(d+ 1)/2 > 0,

‖D−1Rh‖s′ ≤ K(s′)
ε

γ

(
‖h‖s′ ‖a‖s + ‖a‖s′‖h‖0Nµ0

)
. (56)

Proof. We shall use several times the following bound, proved as in the first step of the proof of Lemma
3.13: if λ > 0 and η > d+ 1, then ∑

σ∈A

1
(λ+Mσ)η

≤ C(η)
(1 + λ)η−(d+1)

. (57)

Given h =
∑
α∈A hα, we have

D−1Rh =
∑
σ∈A

wσ with wσ := (UΩσ
Ωσ

)−1
(∑
α 6=σ

UΩα
Ωσ
hα

)
∈ HΩσ .

From lemmas 3.13, 3.12 and (H2), we get, for ν := δ(s− (d+ 1)/2),

‖wσ‖0 ≤ c
Mτ
σ

γ

(∑
α6=σ

‖UΩα
Ωσ
‖0‖hα‖0

)
(58)

≤ c
Mτ
σ

γ

(∑
α6=σ

Cε‖a‖s
(Mα +Mσ)ν

‖hα‖0
)

≤ C
ε

γ
‖a‖s‖h‖0Mτ

σ

(∑
α6=σ

1
(Mσ +Mα)2ν

)1/2

≤ ε

γ

C‖a‖s
(1 +Mσ)ν−τ−(d+1)/2

‖h‖0,
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by the Cauchy-Schwartz inequality and (57). Hence

‖D−1Rh‖0 =
(∑
σ∈A
‖wσ‖20

)1/2

≤ C ε
γ

(∑
σ

1
(1 +Mσ)2ν−2τ−(d+1)

)1/2

‖a‖s‖h‖0 ≤ K
ε

γ
‖a‖s‖h‖0

still by (57) (note that ν > τ + d+ 1 by (49)). This proves (55).
In order to prove (56) we observe that:

i) if Mα ≥Mσ/4 then

Ms′

σ ‖U
Ωα
Ωσ
‖0‖hα‖0

(P4)

≤ ‖UΩα
Ωσ
‖0
Ms′

σ

ms′
α

‖hα‖s′
(H1)

≤ ‖UΩα
Ωσ
‖02s

′Ms′

σ

Ms′
α

‖hα‖s′ ≤
Cε8s

′‖a‖s
(Mα +Mσ)ν

‖hα‖s′ ,

using also lemma 3.12 and (H2).

ii) if Mα < Mσ/4 then, by (H1), dist(Ωα,Ωσ) ≥Mσ/4, and, by Lemma 3.12,

Ms′

σ ‖U
Ωα
Ωσ
‖0‖hα‖0 ≤Ms′

σ

εC(s′)‖a‖s′
d(Ωα,Ωσ)s′−

d+1
2

‖hα‖0 ≤ K(s′)‖a‖s′εM (d+1)/2
σ ‖hα‖0 .

Therefore, from (58),

‖wσ‖s′
(P4)

≤ Ms′

σ ‖wσ‖0 ≤ C(s′)
ε

γ
Mτ
σ

( ∑
α,Mα≥Mσ/4

‖a‖s‖hα‖s′
(Mα +Mσ)ν

+ ‖a‖s′M (d+1)/2
σ

∑
α,Mα<Mσ/4

‖hα‖0
)

≤ C(s′)
ε

γ
Mτ
σ

( ‖a‖s‖h‖s′
M

ν−(d+1)/2
σ

+ ‖a‖s′Md+1
σ ‖h‖0

)
, (59)

by the Cauchy-Schwartz inequality and (57). Finally

‖D−1Rh‖s′ = (
∑
σ∈A
‖wσ‖2s′)1/2

(59)

≤ C(s′)
ε

γ

[(∑
σ

1

M
2ν−2τ−(d+1)
σ

)1/2

‖a‖s‖h‖s′ +
(∑

σ

M2τ+2(d+1)
σ

)1/2

‖a‖s′‖h‖0
]

(57)

≤ K(s′)
ε

γ

(
‖h‖s′‖a‖s + ‖a‖s′Nτ+3(d+1)/2‖h‖0

)
proving (56).

By (55), for εγ−1‖a‖s small, the operator U is invertible, and, using (56), we prove the following
interpolation type inequality for U−1.

Lemma 3.16 ∀s′ ≥ s(d, τ), there is c(s′) > 0 such that, if εγ−1(‖a‖s + 1) ≤ c(s′), then

‖U−1h‖s′ ≤ K(s′)γ−1Nµ(‖h‖s′ + ‖a‖s′‖h‖0) , ∀h ∈ HS ,

with µ := 2τ + 3(d+ 1)/2.

Proof. If ε‖a‖sγ−1 is small enough then, by (55), ‖D−1R‖0 ≤ 1/2 and I + D−1R is invertible,
‖(I + D−1R)−1‖0 ≤ 2. Then, arguing like in the proof of Lemma 3.8, we derive from (56) that for
ε(‖a‖s + 1)γ−1 ≤ c(s′) small enough,

‖(I +D−1R)−1h‖s′ ≤ 2‖h‖s′ + ‖a‖s′‖h‖0Nµ0 .

Using lemma 3.14 the thesis follows.

Proof of Proposition 3.1 concluded. Lemma 3.16, (46), (45) and lemma 3.8 yield (37). We use
also that ‖a‖s′ = ‖(∂uF )(t, x, u)‖s′ ≤ C(s′)‖u‖s′ , by property (P2) applied to ∂uF .
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4 Separation properties of the singular sites

In this section we verify, assuming only the standard Diophantine condition (7) and the nonresonance
condition (2), that, for ρ < ρ(γ), there is a partition of the singular sites like in (35) verifying (H1)-(H2)
with δ depending only on d. The proof follows essentially the scheme of [6] except in lemmas 4.1 and 4.4.

Consider the bilinear symmetric form ϕω : Rd+1 ×Rd+1 → R defined by

ϕω(x, x′) := j · j′ − ω2l l′ , ∀x = (l, j) , x′ = (l′, j′) ∈ R×Rd

and the corresponding quadratic form

Qω(x) = ϕω(x, x) := |j|2 − ω2l2 .

A vector x = (l, j) ∈ Z× Zd is said “weakly singular” if |Qω(x)| ≤ 1 + |m|.

Definition 4.1 A sequence x0, . . . , xK ∈ Zd+1 of distinct, weakly singular, integer vectors satisfying, for
some B ≥ 2, |xk+1 − xk| ≤ B, ∀k = 0, . . . ,K − 1, is called a B-chain of length K.

Theorem 4.1 If ω2 satisfies (7), then any B-chain has length K ≤ BC/γr for some C := C(d) > 0 and
r := r(d) > 0.

Remark 4.1 Theorem 4.1 has been proved in [6], see lemma 2.10, assuming the stronger Diophan-
tine condition |

∑10d
j=0 ajω

2j | ≥ (
∑
j |aj |)−C , ∀(aj) ∈ Z10d+1\{0} and in [10], lemma 8.7, assuming

|
∑d+1
j=0 ajω

2j | ≥ (
∑
j |aj |)−C , ∀(aj) ∈ Zd+1\{0}.

The proof of Theorem 4.1 is split in several lemmas.
Given integer vectors fi ∈ Zd+1, i = 1, . . . , n, 1 ≤ n ≤ d+ 1, linearly independent on R, we consider

the subspace F := SpanR{f1, . . . , fn} of Rd+1 and the restriction ϕω|F of the bilinear form ϕω to F ,
which is represented by the symmetric matrix

Aω := {ϕω(fi, fi′)}ni,i′=1 ∈ Matn(R) .

Introducing the symmetric bilinear forms

R(x, x′) := j · j′ and S(x, x′) := l l′,

we write
ϕω = R− ω2S and Aω = R− ω2S

where R := {R(fi, fi′)}ni,i′=1 = (R1, . . . , Rn) , S := {S(fi, fi′)}ni,i′=1 = (S1, . . . , Sn) are the matrices that
represent respectively R|F and S|F in the basis {f1, . . . , fn}. Note that the matrices R, S have integer
coefficients. Here Ri, Si ∈ Zn, i = 1, . . . , n denote the column vectors respectively of R and S. The
following lemma is the main difference with respect to [6].

Lemma 4.1 Assume that ω2 satisfies (7). Then Aω is invertible and

‖A−1
ω ‖ ≤

c(n)
γ

(
max

i=1,...,n
|fi|
)5n−2

. (60)

Proof. The matrix S has rank at most 1 because it represents the restriction to F of a bilinear form
of rank 1. Since any two columns of S are colinear, the development in ω2 of detAω reduces to

detAω = det(R1 − ω2S1, . . . , Rn − ω2Sn) = det(R1, . . . , Rn)− ω2
n∑
i=1

det(R1, . . . , Si, . . . , Rn). (61)

Therefore detAω = P (ω2) is a polynomial in ω2 of degree at most 1, with integer coefficients since detR,
det(R1, . . . , Si, . . . , Rn) ∈ Z. Furthermore P (·) is not identically zero because P (−1) = det(R + S) is
positive (the matrix R+ S being positive definite).
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By (61), if detR = 0 then |detAω| ≥ ω2, and, if detR 6= 0, since ω2 satisfies (7), |detAω| ≥
γ|detR|−3/2. Since R + S = tF F with F = (f1, . . . , fn), we have 0 ≤ detR ≤ det(R + S) = (detF)2 ≤
|f1|2 . . . |fn|2 ≤M2n, where M := maxi=1,...,n |fi|. Hence

|detAω| ≥
γ

M3n
. (62)

By (7), ω2 ≥ γ, and (62) holds in both cases. Applying the Cramer rule

|(A−1
ω )i,i′ | ≤

c(n)
|detAω|

(M2)(n−1)
(62)

≤ c′(n)
γ

M3n+2(n−1)

whence (60) follows.

The remainder of the proof follows [6] (although some details are different). We report it for com-
pleteness.

By lemma 4.1 the bilinear form ϕω|F is non-degenerate and we decompose

Rd+1 = F ⊕ F⊥ϕω where F⊥ϕω :=
{
x ∈ Rd+1 | ϕω(x, f) = 0 , ∀f ∈ F

}
.

We denote by PF : Rd+1 → F the corresponding projector onto F .

Lemma 4.2 Let x0, . . . , xL be a B-chain. Define G := SpanR{xi − xk | i, k = 0, . . . , L} ⊂ Rd+1. Then,
calling n := dimG,

|PG(xj)| ≤
c(n)
γ

(LB)5n+1 , ∀j = 0, . . . , L . (63)

Proof. For all i 6= j, by bilinearity,

Qω(xi) = Qω(xj + (xi − xj)) = Qω(xj) + 2ϕω(xj , xi − xj) +Qω(xi − xj) . (64)

Since |xi − xj | ≤ |i− j|B and |Qω(xi)|, |Qω(xj)| ≤ 1 + |m|, we get

|2ϕω(xj , xi − xj)|
(64)

≤ 2 + 2|m|+ C|xi − xj |2 ≤ 2 + 2|m|+ C|i− j|2B2 ≤ C ′L2B2 . (65)

According to the decomposition Rd+1 = G ⊕ G⊥ϕω we write xj = yj + zj with yj := PG(xj) ∈ G and
zj ∈ G⊥ϕω .

Fixed any j ∈ [0, L] we have G = SpanR{xi − xj ; i = 0, . . . , L}. Let us extract from {xi − xj ,
i = 0, . . . , L}, a basis {f1, . . . , fn} of G. We develop yj =

∑n
l=1 al,jfl whence

Aωa = b where a :=

 a1,j

. . .
an,j

 , b :=

 ϕω(f1, xj)
. . .

ϕω(fn, xj)

 , (66)

using that ϕω(fm, yj) = ϕω(fm, xj) because zj ∈ G⊥ϕω . By (65), |b| ≤ CL2B2 and, by lemma 4.1,

|a| ≤ ‖A−1
ω ‖|b| ≤

c(n)
γ

(
max

i=1,...,n
|fi|
)5n−2

L2B2 ≤ c(n)
γ

(LB)5n

since |fi| ≤ LB. Finally, |yj | ≤
∑n
l=1 |al,j | |fl| ≤ (c(n)/γ)(LB)5nLB, which gives (63).

Lemma 4.3 Let x0, . . . , xK be a B-chain. Let 1 ≤ L ≤ K be such that

∀j = 0, . . . ,K , SpanR

{
xi − xj | |i− j| ≤ L

}
= SpanR

{
xi − xl | i, l = 0, . . . ,K

}
=: F . (67)

Then, for ρn := 5n+ 1, n := dimF ,
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• a) |PF (xj)| ≤
c(n)
γ

(LB)ρn , ∀j = 0, . . . ,K;

• b) |xj2 − xj1 | ≤
c(n)
γ

(LB)ρn , ∀j1, j2 ∈ {0, . . . ,K};

• c) K ≤ c(n)
γn

(LB)ρnn.

Proof. For every fixed j ∈ {0, . . . ,K} apply lemma 4.2 to the B-chain {xi} with |i − j| ≤ L , i ∈
{0, . . . ,K}. By (67) we have G := SpanR{xi − xk | |i− j|, |k − j| ≤ L

}
= F , and therefore, by (63) we

deduce a).
Now, by the definition of F , ∀j1, j2 ∈ {0, . . . ,K}, we have xj2 − xj1 ∈ F and therefore by a),

|xj2 − xj1 | = |PF (xj2 − xj1)| ≤ |PF (xj2)|+ |PF (xj1)| ≤ c(n)
γ

(LB)5n+1,

which is b).
Finally, ∀j = 1, . . . ,K, by b), |xj − x0| ≤ (c(n)/γ)(LB)ρn , whence xj belongs to the n-dimensional

ball centered at x0 with radius (C(n)/γ)(LB)ρn . The number of integer vectors inside such a ball is less
or equal to (C ′(n)/γn)(LB)ρnn and we deduce c).

Proof of Theorem 4.1 concluded. Define F := SpanR{xi − xl | i, l = 0, . . . ,K} ⊂ Rd+1.
If dimF = 1 then the B-chain x0, . . . , xK satisfies (67) with L = 1 because all the xi are distinct. By

c) we get K ≤ (c/γ)B6. Next, suppose by induction that Theorem 4.1 holds if dimF ≤ n, n ≤ d. We
want to prove Theorem 4.1 when dimF = n+ 1.

Fix L = [K1/α] with α := 2ρn+1(n+ 1). If the B-chain x0, . . . , xK satisfies (67), then, by c),

K ≤ c(n+ 1)
γn+1

(LB)ρn+1(n+1) ≤ c(n+ 1)
γn+1

√
KBρn+1(n+1) =⇒ K ≤ c′(n+ 1)

γ2(n+1)
B2ρn+1(n+1) ≤ BC(n)

γr(n)
.

Otherwise, there exists j ∈ {0, . . . ,K} such that dim SpanR{xi − xj | |i − j| ≤ L} ≤ n. Consider
the B-chain {xi} with |i − j| ≤ L whose length is at most 2L. By the inductive assumption, 2L ≤
BC(n−1)/γr(n−1), whence K ≤ (L+1)α ≤ cBαC(n−1)/γαr(n−1) ≤ BC(n)/γr(n). In both cases K ≤ BC/γr
for some C := C(n), r = r(n).

Finally we show how to get the required decomposition of the singular sites in clusters.

Lemma 4.4 Assume (2) and (7). ∀γ ∈ (0, 1), if ρ ≤ ρ(γ) := γ3r(d)+1/8 there exists a decomposition of
the singular sites

S :=
{

(l, j) ∈ ΩN : |ω2l2 − λj | < ρ
}

=
⋃
α∈A

Ωα (68)

in clusters, like in (35), satisfying properties (H1)-(H2) with δ := 1/2(C(d) + 1) (the constants C(d), r(d)
are those of Theorem 4.1).

Proof. We introduce the following equivalence relation.

Definition 4.2 Given δ > 0, two integer vectors x, y ∈ S are said equivalent if there exist xl ∈ S,
l = 0, 1, . . . n, with x0 = x, xn = y and |xl+1 − xl| ≤ (|xl|+ |xl+1|)δ, ∀l.

Chosen δ := δ(d) := 1/2(C(d) + 1), where C(d) is the constant which appears in Theorem 4.1, we
get a decomposition of S in disjoint equivalence classes Ωα as in (68). To verify that each Ωα is dyadic,
consider zα ∈ Ωα such that |zα| = maxz∈Ωα |z| = Mα. Each x ∈ Ωα is connected to zα by a B-chain with
B = (2Mα)δ. Hence, by Theorem 4.1, there are no more than BC/γr elements in this chain. Therefore
∀x ∈ Ωα,

|x| ≥ |zα| −
BCB

γr
= Mα −

(2Mα)δ(C+1)

γr
= Mα −

√
2Mα

γr
≥ Mα

2
,
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provided that Mα ≥ 8/γ2r. As a consequence, Ωα satisfies the dyadic property (H1) whenever Mα ≥
8/γ2r. Now, if |x| = |(l, j)| ≤ 8/γ2r then by (2)

|ω2l2 − λj | ≥
3γ

(8γ−2r)3/2
≥ γ3r+1

8
.

As a result, if ρ ≤ ρ(γ) := γ3r+1/8 then there is no singular site in the open ball of center 0 and radius
8/γ2r, and all the Ωα satisfy Mα ≥ 8/γ2r and are dyadic.

To prove (H2) consider xα ∈ Ωα, xσ ∈ Ωσ such that d(Ωα,Ωσ)= |xα − xσ|. Since xσ 6∈ Ωα

|xα − xσ| > (|xα|+ |xσ|)δ ≥ (mα +mσ)δ ≥ 1
2

(Mα +Mσ)δ

by (H1), that is (H2).
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